Finding the Sum of Lns.

Calculus Level 3

What is the value of the following expression:

ln ( 1 1 2 2 ) + ln ( 1 1 3 2 ) + ln ( 1 1 4 2 ) + = ? \ln\left(1-\frac{1}{2^2}\right)+\ln\left(1-\frac{1}{3^2}\right)+\ln\left(1-\frac{1}{4^2}\right)+\cdots=\, ?

ln ( 2 ) -\ln (2) ln ( 3 ) \ln (3) 2 ln ( 2 ) -2\ln (2) 2 ln ( 2 ) 2\ln (2) ln ( 2 ) \ln (2) ln ( 3 ) -\ln (3)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
Jul 11, 2018

ln ( 1 1 2 2 ) + ln ( 1 1 3 2 ) + ln ( 1 1 4 2 ) + \ln(1-\dfrac{1}{2^2})+\ln(1-\dfrac{1}{3^2})+\ln(1-\dfrac{1}{4^2})+\dots

= ln ( 1 × 3 2 × 2 × 2 × 4 3 × 3 × 3 × 5 4 × 4 × ) =\ln\left( \dfrac{1\times3}{2\times2}\times\dfrac{2\times4}{3\times3}\times\dfrac{3\times5}{4\times4}\times\cdots\right)

= ln ( 1 2 ) = ln 2 =\ln(\dfrac12)=-\ln2

3 pending reports

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...