Finding the sum of the digits

Find the sum of the digits of ( 100000 + 10000 + 1000 + 100 + 10 + 1 ) 2 (100000+10000+1000+100+10+1)^2


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

We note that:

Number of digits Sum of digits 1 1 2 = 1 s 1 = 1 = 1 2 2 1 1 2 = 121 s 2 = 4 = 2 2 3 11 1 2 = 12321 s 3 = 9 = 3 2 . . . . . . = . . . . . . = . . . = . . . n 111...11 1 2 # of 1s = n = 123... n . . . 321 s n = n 2 \begin{array} {ccc} \small \underline{\text{Number of digits}} & & \small \underline{\text{Sum of digits}} \\ 1 & 1^2 = 1 & s_1 = 1 = 1^2 \\ 2 & 11^2 = 121 & s_2 = 4 = 2^2 \\ 3 & 111^2 = 12321 & s_3 = 9 = 3^2 \\ ... & ... = ... & ... = ... = ... \\ n & \underbrace{111...111^2}_{\text{\# of 1s = n}} = \overline{123...n...321} & s_n = n^2 \end{array}

Let us prove the claim that s n = n 2 s_n = n^2 by induction for all n n . For convenience, let a n = 111...111 # of 1s = n a_n = \underbrace{111...111}_{\text{\# of 1s = n}} and s ( k ) s(k) be the function to find sum of digits of integer k k .

Proof:

  • For n = 1 n=1 , s 1 = 1 = 1 2 s_1 = 1 = 1^2 , the claim is true.

  • Assuming the claim is true for n n , then

a n + 1 = 1 0 n + a n a n + 1 2 = ( 1 0 n + a n ) 2 = 1 0 2 n + 2 ( 1 0 n ) a n + a n 2 s n + 1 = s ( 1 0 2 n + 2 ( 1 0 n ) a n + a n 2 ) = s ( 1 0 2 n ) + s ( 2 ( 1 0 n ) a n ) + s ( a n 2 ) = 1 + 2 s ( a n ) + s n = 1 + 2 n + n 2 = ( n + 1 ) 2 \begin{aligned} a_{\color{#3D99F6}n+1} & = 10^n + a_n \\ a_{\color{#3D99F6}n+1}^2 & = \left(10^n + a_n\right)^2 \\ & = 10^{2n} + 2\left(10^n \right)a_n + a_n^2 \\ \implies s_{\color{#3D99F6}n+1} & = s\left(10^{2n} + 2\left(10^n \right)a_n + a_n^2\right) \\ & = s\left(10^{2n}\right) + s\left(2\left(10^n \right)a_n\right) + s\left(a_n^2\right) \\ & = 1 + 2s\left(a_n\right) + s_n \\ & = 1 + 2n + n^2 \\ & = (n+1)^2 \end{aligned}

\quad Therefore, the claim is also true for n + 1 n+1 and hence true for all n 1 n \ge 1 .

For n = 6 n=6 , we have s 6 = 6 2 = 36 s_6 = 6^2 = \boxed{36} .

Marta Reece
May 4, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...