Finding the truth

Which of the following inequality holds true for whole number value of n n ?

2 2 n ( n + 1 ) ( 2 n n ) 2^{2n} \leq (n+1) \binom{2n}{n} 2 2 n ( n + 1 ) ( 2 n n ) 2^{2n} \geq (n+1) \binom{2n}{n}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mohd. Hamza
Feb 9, 2020

Applying Cauchy-Schwarz inequality on sets { ( n 0 ) , ( n 1 ) , . . . , ( n n ) } \big\{\binom{n}{0},\binom{n}{1},...,\binom{n}{n} \big\} & { 1 , 1 , . . . , 1 } \{1,1,...,1\} k = 0 n ( n k ) ( 1 + 1 + . . . + 1 ) ( n 0 ) 2 + ( n 1 ) 2 + . . . + ( n n ) 2 \displaystyle\sum_{k=0}^n \binom{n}{k} \leq \sqrt{(1+1+...+1)} \sqrt{ {\binom{n}{0}}^2 + {\binom{n}{1}}^2 +...+ {\binom{n}{n}}^2 } 2 n ( n + 1 ) ( 2 n n ) \Rightarrow 2^{n} \leq \sqrt{(n+1)} \sqrt {\binom{2n}{n}} 2 2 n ( n + 1 ) ( 2 n n ) \Rightarrow 2^{2n} \leq (n+1) \binom{2n}{n}

Tom Engelsman
Feb 9, 2020

It is Choice A above, which can be proved via Induction:

CASE I ( n = 1 n=1 ): 2 2 1 ( 1 + 1 ) ( 2 1 ) 4 4 2^{2 \cdot 1} \le (1+1) \cdot {2 \choose 1} \Rightarrow 4 \le 4 (TRUE).

CASE II ( n = k n=k ): 2 2 k ( k + 1 ) ( 2 k k ) 2^{2k} \le (k+1) \cdot {2k \choose k} (ASSUMED TRUE).

CASE III ( n = k + 1 ) n=k+1) : 2 2 k 2 2 2 2 ( k + 1 ) ( 2 k k ) 2 2 ( k + 1 ) 4 ( k + 1 ) ( 2 k k ) ; 2^{2k}2^{2} \le 2^{2} \cdot (k+1) \cdot {2k \choose k} \Rightarrow 2^{2(k+1)} \le 4(k+1) \cdot {2k \choose k};

or 2 2 ( k + 1 ) 4 ( k + 1 ) ( k + 2 k + 2 ) ( 2 k k ) ( 2 ( k + 1 ) k + 1 ) ( 2 ( k + 1 ) k + 1 ) ; 2^{2(k+1)} \le 4 \cdot (k+1)(\frac{k+2}{k+2}) \cdot {2k \choose k}\frac{{2(k+1) \choose k+1}}{{2(k+1) \choose k+1}};

or 2 2 ( k + 1 ) [ ( ( k + 1 ) + 1 ) ( 2 ( k + 1 ) k + 1 ) ] [ 4 k + 4 k + 2 ( 2 k ) ! ( k ! ) 2 ( ( k + 1 ) ! ) 2 ( 2 k + 2 ) ! ] ; 2^{2(k+1)} \le [((k+1)+1) \cdot {2(k+1) \choose k+1}] \cdot [\frac{4k+4}{k+2} \cdot \frac{(2k)!}{(k!)^2} \frac{((k+1)!)^2}{(2k+2)!}];

or 2 2 ( k + 1 ) [ ( ( k + 1 ) + 1 ) ( 2 ( k + 1 ) k + 1 ) ] [ 4 k + 4 k + 2 ( 2 k ) ! ( k ! ) 2 ( k + 1 ) 2 ( k ! ) 2 ( 2 k + 2 ) ( 2 k + 1 ) ( 2 k ) ! ] ; 2^{2(k+1)} \le [((k+1)+1) \cdot {2(k+1) \choose k+1}] \cdot [\frac{4k+4}{k+2} \cdot \frac{(2k)!}{(k!)^2} \frac{(k+1)^2 (k!)^2}{(2k+2)(2k+1)(2k)!}];

or 2 2 ( k + 1 ) [ ( ( k + 1 ) + 1 ) ( 2 ( k + 1 ) k + 1 ) ] [ 2 ( k + 1 ) 2 ( k + 2 ) ( 2 k + 1 ) ] ; 2^{2(k+1)} \le [((k+1)+1) \cdot {2(k+1) \choose k+1}] \cdot [\frac{2(k+1)^2 }{(k+2)(2k+1)}];

or 2 2 ( k + 1 ) [ ( ( k + 1 ) + 1 ) ( 2 ( k + 1 ) k + 1 ) ] [ 2 k 2 + 4 k + 2 2 k 2 + 5 k + 2 ] ; 2^{2(k+1)} \le [((k+1)+1) \cdot {2(k+1) \choose k+1}] \cdot [\frac{2k^2 + 4k +2}{2k^2 + 5k +2}];

or 2 2 ( k + 1 ) [ ( ( k + 1 ) + 1 ) ( 2 ( k + 1 ) k + 1 ) ] [ 1 k 2 k 2 + 5 k + 2 ] [ ( k + 1 ) + 1 ] ( 2 ( k + 1 ) k + 1 ) ; 2^{2(k+1)} \le [((k+1)+1) \cdot {2(k+1) \choose k+1}] \cdot [1 - \frac{k}{2k^2 + 5k +2}] \le [(k+1)+1] \cdot {2(k+1) \choose k+1};

or 2 2 ( k + 1 ) [ ( k + 1 ) + 1 ] ( 2 ( k + 1 ) k + 1 ) . \boxed{2^{2(k+1)} \le [(k+1)+1] \cdot {2(k+1) \choose k+1}}. (TRUE).

Q . E . D . \mathbb{Q.}\mathbb{E.}\mathbb{D.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...