Finding value!

Algebra Level 2

What is the value of 1 l o g x y x y z + 1 l o g x z x y z + 1 l o g z y x y z \displaystyle{ \frac{1}{log_{xy} {xyz}} + \frac{1}{log_{xz} {xyz}} + \frac{1}{log_{zy} {xyz}} }


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Kshitij Johary
Jul 17, 2014

We know that, 1 log a b = log b a \frac { 1 }{ \log _{ a }{ b } } =\log _{ b }{ a } 1 log x y x y z + 1 log y z x y z + 1 log x z x y z = log x y z x y + log x y z y z + log x y z x z \Rightarrow \frac { 1 }{ \log _{ xy }{ xyz } } +\frac { 1 }{ \log _{ yz }{ xyz } } +\frac { 1 }{ \log _{ xz }{ xyz } } =\log _{ xyz }{ xy } +\log _{ xyz }{ yz } +\log _{ xyz }{ xz } log x y z ( x y z ) 2 = 2 \Rightarrow \log _{ xyz }{ { (xyz) }^{ 2 } } =2

Abhishek Singh
Mar 22, 2014

Please do reshare my problems !

Please, allow me to nitpick.

You formatting is poorest.

See how

log x y ( x y z ) \log_{xy}\left(xyz\right)

is better (and clearer) than

l o g x y x y z log_{xy}^{xyz}

The problem is okay, but the formatting is terrible.

Just to show you the code I used:

"(\log_{xy}\left(xyz\right)")

Just change " to backslash.

Bernardo Sulzbach - 6 years, 11 months ago

But you please folow me !!!!!!!!!!!!!!1

Abhisek Mohanty - 6 years, 2 months ago
Bapu Sethi
Mar 28, 2014

1/logX base Y ---------> logY base X and log X + log Y -----> log XY

Sharad Gaikwad
Mar 20, 2014

Its simple! By change of base formula the expression is equal to (log xy+log yz+log zx)/ log (xyz). and which is equal to log [(xyz)^2]/ log (xyz)= 2log(xyz)/log(xyz)=2

Good And simple,thanks K.K.GARG,India

Krishna Garg - 6 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...