FindthevalueofC

Algebra Level 2

Given non-zero real numbers a a and b b are such that 4 a 2 5 a b + b 2 = 0 4a^{2} - 5ab + b^{2} = 0 . Find the values of C = a b + 8 a 2 4 a 2 b 2 \dfrac{ab + 8a^2}{4a^2 - b^2} .

4 4 and 5 5 2 2 and 2 -2 1 1 and 3 -3 3 3 and 1 -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Given that:

4 a 2 5 a b + b 2 = 0 Divide both sides by a b 4 ( a b ) 5 + b a = 0 Let x = a b 4 x 5 + 1 x = 0 Multiply both sides by x 4 x 2 5 a + 1 = 0 ( 4 x 1 ) ( x 1 ) = 0 x = 1 4 , 1 \begin{aligned} 4a^2 - 5ab + b^2 & = 0 & \small \blue{\text{Divide both sides by }ab} \\ 4\left(\frac ab\right) - 5 + \frac ba & = 0 & \small \blue{\text{Let }x = \frac ab} \\ 4x - 5 + \frac 1x & = 0 & \small \blue{\text{Multiply both sides by }x} \\ 4x^2 - 5a + 1 & = 0 \\ (4x-1)(x-1) & = 0 \\ \implies x & = \frac 14, \ 1 \end{aligned}

Then we have:

a b + 8 a 2 4 a 2 b 2 = 1 + 8 x 4 x 1 x Divide up and down by a b = { 1 + 2 1 4 = 1 for x = 1 4 1 + 8 4 1 = 3 for x = 1 \begin{aligned} \frac {ab+8a^2}{4a^2-b^2} & = \frac {1+8x}{4x-\frac 1x} & \small \blue{\text{Divide up and down by }ab} \\ & = \begin{cases} \dfrac {1+2}{1-4} = - 1 & \small \text{for }x = \dfrac 14 \\ \dfrac {1+8}{4-1} = 3 & \small \text{for }x = 1 \end{cases} \end{aligned}

Therefore the answer is 3 and -1 \boxed{\text{3 and -1}} .

Very good solution.

SIN NDT - 1 year, 2 months ago

Log in to reply

Glad that you like it. A nice problem.

Chew-Seong Cheong - 1 year, 2 months ago
Tom Engelsman
Apr 4, 2020

Upon observation, 4 a 2 5 a b + b 2 = ( 4 a b ) ( a b ) = 0 b = a , 4 a . 4a^2 - 5ab + b^2 = (4a-b)(a-b) = 0 \Rightarrow b = a, 4a. Substituting these values of b b yields C = 3 , 1 . \boxed{C = 3, -1}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...