Finite Sum

z = 0 2016 z ( z + 1 ) 2 = ? \displaystyle\sum_{z=0}^{2016}\frac{z (z+1)}{2}=\,?

None of these 1369657969 1367622816 1365589680

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zeeshan Ali
Feb 1, 2016

Problem:

z = 0 2016 [ z ( z + 1 ) 2 ] = ? \displaystyle\sum_{z=0}^{2016}\left[\frac{z (z+1)}{2}\right]=\,?

Solution:

z = 0 2016 [ z ( z + 1 ) 2 ] \displaystyle\sum_{z=0}^{2016}\left[\frac{z (z+1)}{2}\right]

= 1 2 × z = 0 2016 [ z 2 + z ] =\frac{1}{2} \times \displaystyle\sum_{z=0}^{2016}\left[z^2 + z\right]

= 1 2 × [ 2016 ( 2016 + 1 ) ( 2 ( 2016 ) + 1 ) 6 ] + [ 2016 ( 2016 + 1 ) 2 ] =\frac{1}{2} \times \left[ \frac{2016(2016+1)(2(2016)+1)}{6}\right] + \left[ \frac{2016(2016+1)}{2} \right]

= 1367622816 =1367622816

Conclusion:

z = 0 2016 [ z ( z + 1 ) 2 ] = 1367622816 \displaystyle\sum_{z=0}^{2016}\left[\frac{z (z+1)}{2}\right]=\boxed{1367622816}

A simpler (final) answer: ( 2018 3 ) = 1367622816 \dbinom{2018}3 = 1367622816 .

Hint: hockey stick identity .

Pi Han Goh - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...