Finitely Nested Nests

Algebra Level 4

N = 1 + j = 0 2020 402 1 j 1 + j = 0 2020 402 0 j 1 + j = 0 2020 401 9 j 1 + 1 + j = 0 2020 202 3 j 1 + 2021 j = 0 2020 202 2 j 2021 2021 2021 2021 2021 2021 \footnotesize N = \sqrt[2021]{1 + \sum\limits_{j=0}^{2020}4021^j\sqrt[2021]{1+\sum\limits_{j=0}^{2020}4020^j\sqrt[2021]{1+\sum\limits_{j=0}^{2020} 4019^j\sqrt[2021]{1+\dots\sqrt[2021]{1+\sum\limits_{j=0}^{2020}2023^j\sqrt[2021]{1+2021\sum\limits_{j=0}^{2020}2022^j}}}}}}

Evaluate N \lfloor N\rfloor .


The answer is 4021.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chris Lewis
Feb 19, 2021

Start with the formula for the sum of a finite geometric series: j = 0 k n j = n k + 1 1 n 1 \sum_{j=0}^k n^j = \frac{n^{k+1}-1}{n-1}

Manipulating this, ( n 1 ) j = 0 k n j = n k + 1 1 1 + ( n 1 ) j = 0 k n j = n k + 1 1 + ( n 1 ) j = 0 k n j k + 1 = n \begin{aligned} (n-1)\sum_{j=0}^k n^j &= n^{k+1}-1 \\ 1+(n-1)\sum_{j=0}^k n^j &= n^{k+1} \\ \sqrt[k+1]{1+(n-1)\sum_{j=0}^k n^j } &= n \end{aligned}

In the expression in the question, the final root is 1 + 2021 j = 0 2020 202 2 j 2021 \sqrt[2021]{1+2021\sum_{j=0}^{2020} 2022^j }

So setting k = 2020 k=2020 , n = 2022 n=2022 and using the formula above, this works out to be 2022 2022 . Now N = 1 + j = 0 2020 402 1 j 1 + j = 0 2020 402 0 j 1 + j = 0 2020 401 9 j 1 + 1 + 2022 j = 0 2020 202 3 j 2021 2021 2021 2021 2021 N=\sqrt[2021]{1+\sum_{j=0}^{2020} 4021^j \sqrt[2021]{1+\sum_{j=0}^{2020} 4020^j \sqrt[2021]{1+\sum_{j=0}^{2020} 4019^j \sqrt[2021]{1+\cdots \sqrt[2021]{1+2022\sum_{j=0}^{2020} 2023^j } }}}}

This process continues, and we find N = 1 + 4020 j = 0 2020 402 1 j 2021 = 4021 N=\sqrt[2021]{1+4020\sum_{j=0}^{2020} 4021^j }=\boxed{4021}

Hi Chris! Plz revisit the discussion about the integral. I have some questions!

Link

Inquisitor Math - 3 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...