First Electric then Magnetic!

A particle having charge 1 C 1 \text{ C} and mass of 1 kg 1 \text{ kg} is released from rest at origin. There are electric and magnetic fields given by

E = ( 10 i ^ ) N / C for x 1.8 m \displaystyle \vec{E} = (10 \hat{i})N/C \quad \text{for} \quad x \leq 1.8 \text{ m}

B = ( 5 k ^ ) T for 1.8 m x 2.4 m \displaystyle \vec{B} = (-5 \hat{k})T \quad \text{for} \quad 1.8 \text{ m} \leq x \leq 2.4 \text{ m}

A screen is placed parallel to y \text y - z \text z plane at x = 3 m x = 3 \text{ m} . The y-coordinate of particle where it collides with the screen can be written as

a ( b c ) d \dfrac{a(b - \sqrt{c})}{d}

Where gcd ( a , d ) = 1 \text{gcd}(a,d) = 1 and c is square free. Find a + b + c + d a+b+c+d .

Details and Assumptions :

  • Neglect gravity.


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

M o t i o n _ I n _ E l e c t r i c _ f i e l d a = 10 m s 2 d v d t = 10 v = 10 t . . . ( 1 ) 1.8 = 0 + 5 t 2 t = 3 5 s e c v ( a t x = 1.8 ) = 6 m s M o t i o n _ I n _ M a g n e t i c _ f i e l d R = m . v q . B = 1.2 m R e g i o n o f m a g n e t i c f i e l d = 0.6 m T h e r e f o r e , a n g l e o f e m e r g e n c e = 30 . B y a p p l y i n g s i m p l e g e o m e t r y , w e c a n d e t e r m i n e c o o r d i n a t e o f p o i n t o f e m e r g e n c e . ( h , k ) ( 2.4 , 6 3 3 5 ) e q u a t i o n o f l i n e p a s s i n g t h r o u g h ( h , k ) t a n 30 = y 6 3 3 5 3 2.4 y = 2 ( 3 3 ) 5 Motion\_ In\_ Electric\_ field\\ a\quad =\quad 10\frac { m }{ { s }^{ 2 } } \\ \frac { dv }{ dt } =10\\ v=10t\quad ...(1)\\ 1.8\quad =\quad 0\quad +\quad 5{ t }^{ 2 }\\ t\quad =\quad \frac { 3 }{ 5 } sec\\ v(at\quad x=1.8)\quad =\quad 6\frac { m }{ s } \\ Motion\_ In\_ Magnetic\_ field\\ R\quad =\quad \frac { m.v }{ q.B } \quad =\quad 1.2m\\ Region\quad of\quad magnetic\quad field\quad =\quad 0.6m\\ Therefore,\quad angle\quad of\quad emergence\quad =\quad { 30 }^{ . }\\ By\quad applying\quad simple\quad geometry,\quad we\quad can\quad determine\quad \\ coordinate\quad of\quad point\quad of\quad emergence.\\ (h,k)\quad \equiv \quad (2.4,\frac { 6-3\sqrt { 3 } }{ 5 } )\\ equation\quad of\quad line\quad passing\quad through\quad (h,k)\\ tan30\quad =\quad \frac { y\quad -\quad \frac { 6-3\sqrt { 3 } }{ 5 } }{ 3-2.4 } \\ y\quad =\quad \frac { 2(3-\sqrt { 3 } ) }{ 5 } \\ \\

Aishwary Omkar
May 18, 2015

hey this came in my 17 may test Sorry not a solution cuz therewas no space for comments

where did you get this

Aishwary Omkar - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...