First Problem for Floors

Algebra Level 4

Given that x 2 + y 2 = 4 x^2 + y^2 = 4 , solve for:

max ( 3 x + 4 y + 3 x 4 + 4 y 4 + 3 x 8 + 4 y 8 + 3 x 16 + 4 y 16 + + 3 x 512 + 4 y 512 ) \large {\max(\lfloor\sqrt{3x}\rfloor + \lfloor\sqrt{4y}\rfloor + \lfloor\sqrt[4]{3x}\rfloor + \lfloor\sqrt[4]{4y}\rfloor + \lfloor\sqrt[8]{3x}\rfloor + \lfloor\sqrt[8]{4y}\rfloor + \lfloor\sqrt[16]{3x}\rfloor + \lfloor\sqrt[16]{4y}\rfloor + \cdots + \lfloor\sqrt[512]{3x}\rfloor + \lfloor\sqrt[512]{4y}\rfloor)}


For more problems like this, try answering this set .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Christian Daang
Jan 30, 2017

By Cauchy Schwartz,

( 3 x + 4 y ) 2 2 ( ( 3 x ) 2 + ( 4 y ) 2 ) 2 ( 3 x + 4 y ) 2 ( 3 x + 4 y ) 2 ( 10 ) 3 x + 4 y 20 \large {(\lfloor\sqrt{3x}\rfloor + \lfloor\sqrt{4y}\rfloor)^2 \leq 2 \left( (\lfloor\sqrt{3x}\rfloor)^2 + (\lfloor\sqrt{4y}\rfloor)^2 \right) \leq 2(\lfloor3x\rfloor + \lfloor4y\rfloor) \leq 2(3x+4y) \leq 2(10) \\ \implies \lfloor\sqrt{3x}\rfloor + \lfloor\sqrt{4y}\rfloor \leq \sqrt{20}}

From the inequality above, we can say that: ( 3 x n + 4 y n ) 2 2 ( 3 x n 2 + 4 y n 2 ) \large {\text{From the inequality above, we can say that:} \\ (\lfloor\sqrt[n]{3x}\rfloor + \lfloor\sqrt[n]{4y}\rfloor)^2 \leq 2(\lfloor\sqrt[\frac{n}{2}]{3x}\rfloor + \lfloor\sqrt[\frac{n}{2}]{4y}\rfloor)}

( 3 x 4 + 4 y 4 ) 2 2 ( 3 x + 4 y ) 2 ( 20 ) 3 x 4 + 4 y 4 2 20 \large{ (\lfloor\sqrt[4]{3x}\rfloor + \lfloor\sqrt[4]{4y}\rfloor)^2 \leq 2(\lfloor\sqrt{3x}\rfloor + \lfloor\sqrt{4y}\rfloor) \leq 2(\sqrt{20}) \\ \implies \lfloor\sqrt[4]{3x}\rfloor + \lfloor\sqrt[4]{4y}\rfloor \leq \sqrt{2\sqrt{20}}}

( 3 x 8 + 4 y 8 ) 2 2 ( 3 x 4 + 4 y 4 ) 2 ( 2 20 ) 3 x 8 + 4 y 8 2 2 20 \large{ (\lfloor\sqrt[8]{3x}\rfloor + \lfloor\sqrt[8]{4y}\rfloor)^2 \leq 2(\lfloor\sqrt[4]{3x}\rfloor + \lfloor\sqrt[4]{4y}\rfloor) \leq 2(\sqrt{2\sqrt{20}}) \\ \implies \lfloor\sqrt[8]{3x}\rfloor + \lfloor\sqrt[8]{4y}\rfloor \leq \sqrt{2\sqrt{2\sqrt{20}}}} \\ \cdots

Hence,

max ( 3 x + 4 y + 3 x 4 + 4 y 4 + 3 x 8 + 4 y 8 + 3 x 16 + 4 y 16 + + 3 x 512 + 4 y 512 ) = 20 + 2 20 + 2 2 20 + . . . + 2 2 . . . 20 8 2 s (not considering the digit 2 in 20) = 4 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 = 20 \large {\max(\lfloor\sqrt{3x}\rfloor + \lfloor\sqrt{4y}\rfloor + \lfloor\sqrt[4]{3x}\rfloor + \lfloor\sqrt[4]{4y}\rfloor + \lfloor\sqrt[8]{3x}\rfloor + \lfloor\sqrt[8]{4y}\rfloor + \lfloor\sqrt[16]{3x}\rfloor + \lfloor\sqrt[16]{4y}\rfloor + \cdots + \lfloor\sqrt[512]{3x}\rfloor + \lfloor\sqrt[512]{4y}\rfloor) \\ = \lfloor\sqrt{20}\rfloor + \lfloor \sqrt{2\sqrt{20}} \rfloor + \lfloor \sqrt{2\sqrt{2\sqrt{20}}} \rfloor + ... + \underbrace{\lfloor \sqrt{2\sqrt{2\sqrt{...\sqrt{20}}}} \rfloor }_{8 \ 2's \ \text{(not considering the digit 2 in 20)}} \\ = 4 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 \\ = \ \boxed{20}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...