First Problem in 2018

Algebra Level 3

For positive reals x x and y y , is it true that

1 ( 1 + x ) 2 + 1 ( 1 + y ) 2 2 x + y + 2 \large \dfrac{1}{(1 + \sqrt{x}) ^2} + \dfrac{1}{(1 + \sqrt{y})^2} \geq \dfrac{2}{x+y+2}

For more problems on finding maximum and minimum value, click here


Try another problem on my set! Warming Up and More Practice
False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 11, 2018

Relevant wiki: Titu's Lemma

By Cauchy-Schwarz inequality ( 1 + x ) 2 2 ( 1 + x ) (1+\sqrt x)^2 \le 2(1+x) , 1 ( 1 + x ) 2 1 2 ( 1 + x ) \implies \dfrac 1{(1+\sqrt x)^2} \ge \dfrac 1{2(1+x)} . Therefore, we have:

1 ( 1 + x ) 2 + 1 ( 1 + y ) 2 1 2 ( 1 + x ) + 1 2 ( 1 + y ) By Titu’s lemma ( 1 + 1 ) 2 2 + 2 x + 2 + 2 y = 2 x + y + 2 \begin{aligned} \frac 1{(1+\sqrt x)^2} + \frac 1{(1+\sqrt y)^2} & \ge \color{#3D99F6} \frac 1{2(1+x)} + \frac 1{2(1+y)} & \small \color{#3D99F6} \text{By Titu's lemma} \\ & \ge \color{#3D99F6} \frac {(1+1)^2}{2+2x+2+2y} \\ & = \boxed{\dfrac 2{x+y+2}} \end{aligned}

Equality occurs when x = y = 1 x=y=1 . Therefore, the inequality is true .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...