Fitting a cone to four points

Geometry Level pending

You have four points: A ( 0 , 0 , 30 ) , B ( 0 , 0 , 0 ) , C ( 20 , 0 , 0 ) , D ( 10 , 10 , 0 ) A(0, 0, 30) , B(0,0,0), C(20, 0, 0), D(10, 10, 0) . You want to fit the unique cone that has its vertex at point A A and whose surface contains the points B , C B , C and D D . If a ^ = ( a x , a y , a z ) \hat{a} = (a_x, a_y, a_z) is the unit vector of the axis of the cone, and θ c \theta_c (in radians) is the semi-vertical angle of the cone (this is the angle between the axis and the surface of the cone), then enter the sum θ c + a x + a y + a z \theta_c + a_x + a_y + a_z .


The answer is -0.3597.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Mar 15, 2020

The vector equation through A B \overrightarrow{AB} can be given as ( x , y , z ) = ( 0 , 0 , 30 ) + ( 0 , 0 , 30 ) t 1 (x, y, z) = (0, 0, 30) + (0, 0, -30)t_1 , through A C \overrightarrow{AC} as ( x , y , z ) = ( 0 , 0 , 30 ) + ( 20 , 0 , 30 ) t 2 (x, y, z) = (0, 0, 30) + (20, 0, -30)t_2 , and through A D \overrightarrow{AD} as ( x , y , z ) = ( 0 , 0 , 30 ) + ( 10 , 10 , 30 ) t 3 (x, y, z) = (0, 0, 30) + (10, 10, -30)t_3 .

Let E E be on A C \overrightarrow{AC} such that A E = A B |\overrightarrow{AE}| = |\overrightarrow{AB}| , and let F F be on A D \overrightarrow{AD} such that A F = A B |\overrightarrow{AF}| = |\overrightarrow{AB}| . Since E E is on A C \overrightarrow{AC} and A E = A B |\overrightarrow{AE}| = |\overrightarrow{AB}| , ( 2 0 2 + 0 2 + ( 30 ) 2 ) t 2 2 = 0 2 + 0 2 + ( 30 ) 2 (20^2 + 0^2 + (-30)^2)t_2^2 = 0^2 + 0^2 + (-30)^2 , which solves to t 2 = 3 13 t_2 = \frac{3}{\sqrt{13}} , which means that E E is at ( x , y , z ) = ( 0 , 0 , 30 ) + ( 20 , 0 , 30 ) 3 13 = ( 60 13 13 , 0 , 390 90 13 13 ) (x, y, z) = (0, 0, 30) + (20, 0, -30)\frac{3}{\sqrt{13}} = (\frac{60\sqrt{13}}{13}, 0, \frac{390 - 90\sqrt{13}}{13}) . Similarly, since F F is on A D \overrightarrow{AD} and A F = A B |\overrightarrow{AF}| = |\overrightarrow{AB}| , ( 1 0 2 + 1 0 2 + ( 30 ) 2 ) t 3 2 = 0 2 + 0 2 + ( 30 ) 2 (10^2 + 10^2 + (-30)^2)t_3^2 = 0^2 + 0^2 + (-30)^2 , which solves to t 2 = 3 11 t_2 = \frac{3}{\sqrt{11}} , which means that F F is at ( x , y , z ) = ( 0 , 0 , 30 ) + ( 10 , 10 , 30 ) 3 11 = ( 30 11 11 , 30 11 11 , 330 90 11 11 ) (x, y, z) = (0, 0, 30) + (10, 10, -30)\frac{3}{\sqrt{11}} = (\frac{30\sqrt{11}}{11}, \frac{30\sqrt{11}}{11}, \frac{330 - 90\sqrt{11}}{11}) .

The points B ( 0 , 0 , 0 ) B(0, 0, 0) , E ( 60 13 13 , 0 , 390 90 13 13 ) E(\frac{60\sqrt{13}}{13}, 0, \frac{390 - 90\sqrt{13}}{13}) , and F ( 30 11 11 , 30 11 11 , 330 90 11 11 ) F(\frac{30\sqrt{11}}{11}, \frac{30\sqrt{11}}{11}, \frac{330 - 90\sqrt{11}}{11}) must be on a plane that cuts the cone perpendicular to its axis, and must be on a circle in which that axis passes through its center O O . The equation of the plane through B B , E E , and F F is:

( 3 143 13 11 ) x + ( 3 143 + 13 11 22 13 ) y + 2 143 z = 0 (3\sqrt{143} - 13\sqrt{11})x + (3\sqrt{143} + 13\sqrt{11} - 22\sqrt{13})y + 2\sqrt{143}z = 0

the equation of the plane on the perpendicular bisector of B B and E E is

2 13 x + ( 13 3 13 ) z = 390 90 13 2\sqrt{13}x + (13 - 3\sqrt{13})z = 390 - 90\sqrt{13}

and the equation of the plane on the perpendicular bisector of B B and F F is

11 x + 11 y + ( 11 3 11 ) z = 30 ( 11 3 11 ) \sqrt{11}x + \sqrt{11}y + (11 - 3\sqrt{11})z = 30(11 - 3\sqrt{11})

and these three equations intersect at O ( 8.31904 , 0.38052 , 2.52407 ) O \approx (8.31904, 0.38052, 2.52407) .

This makes A O ( 8.31904 , 0.38052 , 27.47593 ) \overrightarrow{AO} \approx (8.31904, 0.38052, -27.47593) , the unit vector ( a x , a y , a z ) 1 8.3190 4 2 + 0.3805 2 2 + ( 27.47593 ) 2 ( 8.31904 , 0.38052 , 27.47593 ) ( 0.28976 , 0.01325 , 0.95701 ) (a_x, a_y, a_z) \approx \frac{1}{\sqrt{8.31904^2 + 0.38052^2 + (-27.47593)^2}}(8.31904, 0.38052, -27.47593) \approx (0.28976, 0.01325, -0.95701) , and the semi-vertical angle θ c cos 1 ( ( 0 , 0 , 30 ) ( 8.31904 , 0.38052 , 27.47593 ) 0 2 + 0 2 + ( 30 ) 2 8.3190 4 2 + 0.3805 2 2 + ( 27.47593 ) 2 ) 0.29429 \theta_c \approx \cos^{-1} \Big( \frac{(0, 0, -30) \bullet (8.31904, 0.38052, -27.47593)}{\sqrt{0^2 + 0^2 + (-30)^2}\sqrt{8.31904^2 + 0.38052^2 + (-27.47593)^2}} \Big) \approx 0.29429 .

Therefore, a x + a y + a z + θ c 0.28976 + 0.01325 + ( 0.95701 ) + 0.29429 0.3597 a_x + a_y + a_z + \theta_c \approx 0.28976 + 0.01325 + (-0.95701) + 0.29429 \approx \boxed{-0.3597} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...