Fitting a parabola to four Cartesian points

Geometry Level 3

In the Cartesian x y xy -plane, you are given the following four points, A ( 5 , 0 ) , B ( 1 , 1 ) , C ( 3 , 5 ) , D ( 6 , 4 ) A (5, 0), B(1, -1), C(-3, 5) , D(6, 4) . You want to fit a parabola that will pass through the four points. As it turns out, there are two such parabolas shown in the figure below in blue and green colors. Each of them can be represented by the parametric equation:

r = r v + R ( θ ) r r = r_v + R(\theta) r'

where r = ( x ( t ) , y ( t ) ) r = (x(t), y(t) ) , r v = ( r v x , r v y ) r_v = ( r_{vx}, r_{vy}) is the vertex of the parabola, r = ( t , a t 2 ) r' = ( t, at^2 ) , with a > 0 a \gt 0 , and

R = [ cos θ sin θ sin θ cos θ ] R = \begin{bmatrix} \cos \theta && -\sin \theta \\ \sin \theta && \cos \theta \end{bmatrix}

where θ [ 0 , 2 π ) \theta \in [0, 2 \pi) is in radians. Find the two fitting parabolas to the four given points, and find S S where,

S = i = 1 2 r v x i + r v y i + a i + θ i S = \displaystyle \sum_{i= 1}^{2} r_{vx_i} + r_{vy_i} + a_i + \theta_i

where index i i indicates the i i -th parabola. Enter the value of 1 0 4 S \lfloor 10^4 S \rfloor as your answer. The figure is drawn to scale.


The answer is 166436.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
Apr 1, 2019

The unknowns are ( r v x , r v y , θ , a , t A , t B , t C , t D ) (r_{vx}, r_{vy}, \theta, a, t_A, t_B, t_C, t_D) . We can solve the following eight non-linear equations for the eight unknowns:

A x = r v x + c o s θ t A s i n θ a t A 2 A y = r v y + s i n θ t A + c o s θ a t A 2 B x = r v x + c o s θ t B s i n θ a t B 2 B y = r v y + s i n θ t B + c o s θ a t B 2 C x = r v x + c o s θ t C s i n θ a t C 2 C y = r v y + s i n θ t C + c o s θ a t C 2 D x = r v x + c o s θ t D s i n θ a t D 2 D y = r v y + s i n θ t D + c o s θ a t D 2 A_x = r_{vx} + cos \theta \, t_A - sin \theta \, a \, t_A^2 \\ A_y = r_{vy} + sin \theta \, t_A + cos \theta \, a \, t_A^2 \\ B_x = r_{vx} + cos \theta \, t_B - sin \theta \, a \, t_B^2 \\ B_y = r_{vy} + sin \theta \, t_B + cos \theta \, a \, t_B^2 \\ C_x = r_{vx} + cos \theta \, t_C - sin \theta \, a \, t_C^2 \\ C_y = r_{vy} + sin \theta \, t_C + cos \theta \, a \, t_C^2 \\ D_x = r_{vx} + cos \theta \, t_D - sin \theta \, a \, t_D^2 \\ D_y = r_{vy} + sin \theta \, t_D + cos \theta \, a \, t_D^2

Solving using multivariate Newton-Raphson yields the one parabola:

r v x = 3.216840 r v y = 1.994092 θ = 0.192811 a = 0.355328 r_{vx} = 3.216840 \\ r_{vy} = -1.994092 \\ \theta = 0.192811\\ a = 0.355328

And the other:

r v x = 9.731134 r v y = 2.412849 θ = 1.633877 a = 1.094929 r_{vx} = 9.731134 \\ r_{vy} = 2.412849 \\ \theta = 1.633877 \\ a = 1.094929

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...