Fitting an Equilateral Triangle Through 3 Points

Geometry Level 5

Given three points in the Cartesian plane, A ( 5 , 0 ) A (5, 0) , B ( 1.8 , 2.4 ) B ( 1.8, 2.4 ) , and C ( 0 , 0 ) C (0, 0) , you want to find an equilateral triangle whose sides pass through points A A , B B , and C C . In addition, it is required that the side passing through point A A make an angle of + 4 5 +45^{\circ} with the positive x x -axis direction. Find the side length of this equilateral triangle rounded to 5 decimal places. Figure above not drawn to scale


The answer is 7.29728.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

David Vreken
Jul 23, 2018

The slope of the line passing through A A is m A = tan 1 45 ° = 1 m_A = \tan^{-1} 45° = 1 . Since an equilateral triangle has 60° angles, the slope m B m_B through B B must satisfy the equation tan ( 60 ° ) = m B 1 1 + m B \tan (-60°) = \frac{m_B - 1}{1 + m_B} , which solves to m B = 2 + 3 m_B = -2 + \sqrt{3} , and the slope m C m_C through C C must satisfy the equation tan 60 ° = m C 1 1 + m C \tan 60° = \frac{m_C - 1}{1 + m_C} , which solves to m C = 2 3 m_C = -2 - \sqrt{3} .

The equation of the line through A ( 5 , 0 ) A(5, 0) with a slope of m A = 1 m_A = 1 is y = x 5 y = x - 5 . The equation of the line through B ( 1.8 , 2.4 ) B(1.8, 2.4) with a slope of m B = 2 + 3 m_B = -2 + \sqrt{3} is y = ( 2 + 3 ) x + 30 9 3 5 y = (-2 + \sqrt{3})x + \frac{30 - 9\sqrt{3}}{5} . And the equation of the line through C ( 0 , 0 ) C(0, 0) with a slope of m C = 2 3 m_C = -2 - \sqrt{3} is y = ( 2 3 ) x y = (-2 - \sqrt{3})x .

The intersection of y = x 5 y = x - 5 and y = ( 2 + 3 ) x + 30 9 3 5 y = (-2 + \sqrt{3})x + \frac{30 - 9\sqrt{3}}{5} is ( 69 + 14 3 15 , 6 + 14 3 15 ) (\frac{69 + 14\sqrt{3}}{15}, \frac{-6 + 14\sqrt{3}}{15}) , and the intersection of y = x 5 y = x - 5 and y = ( 2 3 ) x y = (-2 - \sqrt{3})x is ( 15 5 3 6 , 15 5 3 6 ) (\frac{15 - 5\sqrt{3}}{6}, \frac{-15 - 5\sqrt{3}}{6}) , and the distance between these two points (and also the side length of the equilateral triangle) is 63 2 + 53 6 30 7.29728 \frac{63\sqrt{2} + 53\sqrt{6}}{30} \approx \boxed{7.29728} .

Kelvin Hong
Jul 25, 2018

With a little bit calculation, we know that A B = 4 , B C = 3 , A C = 5 AB=4, BC=3, AC=5 also A C AC will form an angle 4 5 45^\circ with a side of the equilateral triangle. Construct an ex-triangle with vertices D , E , F D, E, F (see the figure below)

E C sin 4 5 = 5 sin 6 0 \dfrac{EC}{\sin45^\circ}=\dfrac{5}{\sin60^\circ} gets E C = 5 6 3 EC=\dfrac{5\sqrt6}3 ;

E A = E C cos 60 + 5 cos 4 5 = 15 2 + 5 6 6 EA=EC\cos60\circ+5\cos45^\circ=\dfrac{15\sqrt2+5\sqrt6}6 .

Assume the angles B A C = θ , B A F = α , \angle BAC=\theta, \angle BAF=\alpha, we then have tan θ = 3 4 \tan\theta=\dfrac34 and tan ( θ + α ) = tan 13 5 = 1 \tan(\theta+\alpha)=\tan135^\circ=-1 , so

tan α = tan ( θ + α θ ) = tan ( θ + α ) tan θ 1 + tan ( θ + α ) tan α = 1 3 4 1 3 4 = 7 \begin{aligned}\tan\alpha&=\tan(\theta+\alpha-\theta)\\&=\frac{\tan(\theta+\alpha)-\tan\theta}{1+\tan(\theta+\alpha)\tan\alpha}\\&=\frac{-1-\dfrac34}{1-\dfrac34}\\&=-7\end{aligned}

So other trigonometric of α \alpha will be sin α = 7 5 2 \sin\alpha=\dfrac{7}{5\sqrt2} and cos α = 1 5 2 \cos\alpha=-\dfrac1{5\sqrt2} .

Finding B F BF :

B F sin α = 4 sin 6 0 \dfrac{BF}{\sin\alpha}=\dfrac4{\sin60^\circ} to get B F = 28 6 15 BF=\dfrac{28\sqrt6}{15} , then we find A F AF by using same method:

A F = 4 cos α + B F cos 6 0 = 12 2 + 28 6 30 AF=4\cos\alpha+BF\cos60^\circ=\frac{-12\sqrt2+28\sqrt6}{30} .

Adding up E A EA and A F AF will give us the side length of the equilateral triangle:

E F = E A + A F = 15 2 + 5 6 6 + 12 2 + 28 6 30 = 63 2 + 53 6 30 \begin{aligned}EF&=EA+AF\\&=\frac{15\sqrt2+5\sqrt6}{6}+\dfrac{-12\sqrt2+28\sqrt6}{30}\\&=\boxed{\dfrac{63\sqrt2+53\sqrt6}{30}}\end{aligned}

A s s e e n f r o m t h e s k e t c h , t h e Y G , Y B , Y B r t h e e q u a t i o n s o f t h e Δ s i d e s a r e : Y G = X 5. Y B = T a n 15 ( X 1.8 ) + 2.4. Y B r = T a n 75. X Y G a n d Y B i n t e r s e c t a t v e r t e x ( X G B , Y G B ) = ( 7.4 + 1.8 T a n 15 1 + T a n 15 , 7.4 + 1.8 T a n 15 1 + T a n 15 5 ) A n d Y G a n d Y B r i n t e r s e c t a t v e r t e x ( X G B r , Y G B r ) = ( 5 1 + T a n 75 , 5 1 + T a n 75 5 ) t h e s i d e l e n g t h As~ seen~from~the~sketch,~the ~Y_G,~Y_B,~Y_{Br}~the~equations~of~the~\Delta~sides~are:-\\ Y_G=X-5.~~~~~~~~~~Y_B=-Tan15(X-1.8)+2.4.~~~~~~~~~~Y_{Br}=-Tan75.X\\ \therefore~Y_G~and~Y_B~~intersect~at~vertex~(X_{G-B},Y_{G-B})=\left (\dfrac{7.4+1.8Tan15}{1+Tan15}~,~\dfrac{7.4+1.8Tan15}{1+Tan15}~-~5 \right ) \\ And~~Y_G~and~Y_{Br}~~intersect~at~vertex~(X_{G-Br},Y_{G-Br})=\left (\dfrac 5 {1+Tan75}~,~\dfrac 5 {1+Tan75}~-~5 \right ) \\ \therefore~the ~side~length\\ = ( 7.4 + 1.8 T a n 15 1 + T a n 15 5 1 + T a n 75 ) 2 , ( 7.4 + 1.8 T a n 15 1 + T a n 15 5 5 1 + T a n 75 + 5 ) 2 = 2 ( 7.4 + 1.8 T a n 15 1 + T a n 15 5 1 + T a n 75 ) = 2 1 + T a n 15 ( 7.4 3.2 T a n 15 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . S i n c e T a n 75 = 1 T a n 15 = 7.29728 =\sqrt{\left ( \dfrac{7.4+1.8Tan15}{1+Tan15}-\dfrac 5 {1+Tan75} \right )^2~ ,\left (\dfrac{7.4+1.8Tan15}{1+Tan15}-5 ~~-\dfrac 5 {1+Tan75}~+5 \right )^2 } \\ =\sqrt2*\left( \dfrac{7.4+1.8Tan15}{1+Tan15}-\dfrac 5 {1+Tan75} \right )=\dfrac{\sqrt2}{1+Tan15}*(7.4-3.2Tan15)............................Since~~Tan75=\dfrac 1 {Tan15} \\ =\Huge \color{#D61F06}{7.29728}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...