Flat Earth Theory (Part 2)

Suppose there is a solid, uniform circular disk of mass M M and radius R R . This disk represents a "flat Earth".

The center of the disk is at ( x , y , z ) = ( 0 , 0 , 0 ) (x,y,z) = (0,0,0) , and the disk is parallel to the x y xy plane. A massive point particle is located at ( x , y , z ) = ( 1.2185 R , 0 , 0 ) (x,y,z) = (1.2185 R,0,0) . What gravitational acceleration does it experience (in m/s 2 \text{m/s}^2 )?

Details and Assumptions:
1) M = Earth mass = 5.972 × 1 0 24 kg M = \text{Earth mass} = 5.972 \times 10^{24} \, \text{kg}
2) R = Earth radius = 6356 × 1 0 3 m R = \text{Earth radius} = 6356 \times 10^{3} \, \text{m}
3) Gravity constant = 6.674 × 1 0 11 N m 2 kg 2 \text{Gravity constant} = 6.674 \times 10^{-11} \text{N} \, \text{m}^2 \, \text{kg}^{-2}
4) Give your answer as a positive number


The answer is 9.81.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jun 2, 2019

With λ = 1.2185 \lambda = 1.2185 , and with ρ = M π R 2 \rho = \tfrac{M}{\pi R^2} being the mass density of the disk, the force on a test particle of mass m m is G m x 2 + y 2 R 2 ρ d x d y ( λ R x ) 2 + y 2 λ R x ( λ R x ) 2 + y 2 = G m ρ X 2 + Y 2 1 ( λ X ) d X d Y ( ( λ X ) 2 + Y 2 ) 3 2 = G M m π R 2 X 2 + Y 2 1 ( λ X ) d X d Y ( ( λ X ) 2 + Y 2 ) 3 2 \begin{aligned} Gm\iint_{x^2+y^2 \le R^2} \frac{\rho\,dx\,dy}{(\lambda R - x)^2 + y^2}\, \frac{\lambda R - x}{\sqrt{(\lambda R - x)^2 + y^2}} \; = \; Gm\rho \iint_{X^2+Y^2 \le 1}\frac{(\lambda - X)\,dX\,dY}{((\lambda-X)^2 + Y^2)^{\frac32}} \; = \; \frac{GMm}{\pi R^2}\iint_{X^2+Y^2 \le 1}\frac{(\lambda - X)\,dX\,dY}{((\lambda-X)^2 + Y^2)^{\frac32}} \end{aligned} acting along the x x -axis. Thus the particle experiences an acceleration of magnitude G M m π R 2 X 2 + Y 2 1 ( λ X ) d X d Y ( ( λ X ) 2 + Y 2 ) 3 2 = 9.809 m s 2 \frac{GMm}{\pi R^2}\iint_{X^2+Y^2 \le 1}\frac{(\lambda - X)\,dX\,dY}{((\lambda-X)^2 + Y^2)^{\frac32}} \; = \; \boxed{9.809\;}\mathrm{m\,s}^{-2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...