Flat Loops and Magnetism

Two identical loops of R = 1 R=1 both placed in the X Y X-Y plane. A current of I = 2 π A I=2\sqrt{π}A is passing through both the loops. A B = C D = E F = 1 AB=CD=EF=1 Find the magnitude of Magnetic force between them. Details and Assumptions Magnetic Permeability μ 0 = 1 \mu_{0}=1


The answer is 0.622.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
Mar 23, 2020
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import math

# Scan resolution

N = 10000

######################################################

# Constants

u0 = 1.0
I1 = 2.0*math.sqrt(math.pi)
I2 = 2.0*math.sqrt(math.pi)

dtheta1 = 2.0*math.pi/N
dtheta2 = 2.0*math.pi/N

######################################################
######################################################

# Wire 1 is on the right (+x)
# Wire 2 is on the left (-x)

# For every point on wire 1, integrate over wire 2 to find the B field
# Then calculate the infinitesimal force contribution to wire 1
# Add up the infinitesimal force contributions

Fx = 0.0
Fy = 0.0
Fz = 0.0

theta1 = 0.0

while theta1 <= 2.0*math.pi:

    x1 = 1.5 + math.cos(theta1)
    y1 = math.sin(theta1)
    z1 = 0.0

    dx1 = -math.sin(theta1) * dtheta1
    dy1 = math.cos(theta1) * dtheta1
    dz1 = 0.0

    Bx = 0.0
    By = 0.0
    Bz = 0.0

    theta2 = 0.0

    while theta2 <= 2.0*math.pi:     # Determine B field at point on wire 1....
                                    # by integrating over wire 2
                                    # Biot Savart
        x2 = -1.5 + math.cos(theta2)
        y2 = math.sin(theta2)
        z2 = 0.0

        dx2 = -math.sin(theta2) * dtheta2
        dy2 = math.cos(theta2) * dtheta2
        dz2 = 0.0

        rx = x1 - x2                 
        ry = y1 - y2
        rz = z1 - z2

        r = math.sqrt(rx**2.0 + ry**2.0 + rz**2.0)  

        Bcrossx = dy2*rz - dz2*ry      
        Bcrossy = -(dx2*rz - dz2*rx)
        Bcrossz = dx2*ry - dy2*rx

        dBx = (u0*I2/(4.0*math.pi))*Bcrossx/(r**3.0)  
        dBy = (u0*I2/(4.0*math.pi))*Bcrossy/(r**3.0)
        dBz = (u0*I2/(4.0*math.pi))*Bcrossz/(r**3.0)

        Bx = Bx + dBx
        By = By + dBy
        Bz = Bz + dBz

        theta2 = theta2 + dtheta2

    Fcrossx = dy1*Bz - dz1*By        # Add up infinitesimal forces on wire 1
    Fcrossy = -(dx1*Bz - dz1*Bx)     # dF = I*(dL x B)
    Fcrossz = dx1*By - dy1*Bx

    dFx = I1 * Fcrossx
    dFy = I1 * Fcrossy
    dFz = I1 * Fcrossz

    Fx = Fx + dFx            
    Fy = Fy + dFy
    Fz = Fz + dFz

    theta1 = theta1 + dtheta1

######################################################
######################################################

# Print results

print N
print ""
print Fx
print Fy
print Fz
print ""
F = math.sqrt(Fx**2.0 + Fy**2.0 + Fz**2.0)

print F

######################################################
######################################################

#Python 2.7.4 (default, Apr  6 2013, 19:54:46) [MSC v.1500 32 bit (Intel)] on win32
#Type "copyright", "credits" or "license()" for more information.
#>>> ================================ RESTART ================================
#>>> 
#1000

#0.628412076704
#3.73781204203e-14
#0.0

#0.628412076704
#>>> ================================ RESTART ================================
#>>> 
#2000

#0.625507730558
#3.41809805287e-14
#0.0

#0.625507730558
#>>> ================================ RESTART ================================
#>>> 
#4000

#0.624054735018
#1.97704275719e-14
#0.0

#0.624054735018
#>>> ================================ RESTART ================================
#>>> 
#10000

#0.622601191168
#-1.20999490363e-13
#0.0

#0.622601191168
>>> 

@Steven Chase Nice solution. post more question on gauss law.

A Former Brilliant Member - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...