Flaw detector

Algebra Level 3

Here's how we can prove 3 = 3 3=-3 .

Step 1: 3 2 = ( 3 ) 2 \sqrt{3^2}=\sqrt{(-3)^2}

Step 2: 3 × 3 = 3 × 3 \sqrt{3 \times 3}=\sqrt{-3 \times -3}

Step 3: 3 × 3 = 3 × 3 \sqrt{3} \times \sqrt{3}=\sqrt{-3} \times \sqrt{-3}

Step 4: 3 1 2 × 3 1 2 = 3 1 2 i × 3 1 2 i 3^{\frac{1}{2}} \times 3^{\frac{1}{2}}= 3^{\frac{1}{2}}i \times 3^{\frac{1}{2}}i

Step 5: 3 1 2 + 1 2 = 3 1 2 + 1 2 × i 2 3^{\frac{1}{2}+\frac{1}{2}}=3^{\frac{1}{2}+\frac{1}{2}} \times i^2

Hence, 3 = 3 3=-3 .

But we know that 3 3 3 \ne -3 . In which step has the error been committed?

Clarification: i = 1 i=\sqrt{-1} .

There's no error. The calculations are perfect. Step 5 Step 2 Step 3 Step 4 Step 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ralph James
Apr 21, 2016

Relevant wiki: List of Common Misconceptions

a b = a b \sqrt{ab} = \sqrt{a} \cdot \sqrt{b} except when a , b < 0 a,b < 0 .

3 3 3 3 \implies \sqrt{-3 \cdot -3} ≠ \sqrt{-3} \cdot \sqrt{-3} , so Step 3 is mathematically invalid.

If a b 0 a \cdot b\,≥\,0 , then a b = a b \sqrt{ab}\,=\,\sqrt{|a|}\,\cdot\,\sqrt{|b|} .

Now, clearly, a b 0 iff a , b ϵ R + 0 a , b ϵ R 0 a \cdot b\,≥\,0 \,\,\text{iff}\,\,a,b\,\epsilon\,\mathbb{R^{+}} \cup {0} \,\,\bigvee\,\, a,b \,\epsilon\,\mathbb{R^{-}} \cup {0} . a a and b b need not to be necessarily positive integers.

Aditya Sky - 5 years, 1 month ago

Log in to reply

Thank you, sir. I have corrected the mistake in my solution.

Ralph James - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...