Flexible Numbers

A number is flexible if it is a multiple of 8 8 and if a single-digit number is inserted in places between the digits and also at both ends of the original number separately, the new numbers generated are also multiples of 8 8 . For example, the number 200 200 is a flexible number because it is a multiple of 8 and when 8 8 is inserted in between and at both ends of the digits 2 , 0 , 0 , 2, 0, 0, we have 8200 , 2800 , 2080 , 2008 8200, 2800, 2080, 2008 , which are all multiples of 8 8 . Find the total number of positive three-digit flexible numbers.

Clarifications: \textbf{Clarifications:}

1.A three-digit number must be a number with three digits and the first digit must not be 0 0 .

2.When 0 0 is inserted at the beginning of a number, the result will be the same as the original number.

3.If any one of the single-digit numbers ( 0 9 ) (0-9) paired with a three-digit number yields the intended result, then the three-digit number is indeed flexible.

This is part of the set Fun With Problem-Solving .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Leonel Castillo
Jan 25, 2018

Let our three digit number be a b c abc . Then first of all it must be divisible by 8 so we have 100 a + 10 b + c 0 m o d 8 4 a + 2 b + c 0 m o d 8 100a + 10 b + c \equiv 0 \mod 8 \implies 4a + 2b + c \equiv 0 \mod 8 . (1)

Then it must be that 8 a b c 8abc is divisible by 8, but 8 a b c 8 × 1000 + a b c a b c m o d 8 8abc \equiv 8 \times 1000 + abc \equiv abc \mod 8 so no new properties are obtained.

Then it must be that a 8 b c 0 m o d 8 a8bc \equiv 0 \mod 8 so 1000 × a + 10 b + c 0 m o d 8 2 b + c 0 m o d 8 1000 \times a + 10b + c \equiv 0 \mod 8 \implies 2b + c \equiv 0 \mod 8 . (2) .

Then it must be that a b 8 c 0 m o d 8 ab8c \equiv 0 \mod 8 so 1000 a + 100 b + c 0 m o d 8 4 b + c 0 m o d 8 1000a + 100b + c \equiv 0 \mod 8 \implies 4b + c \equiv 0 \mod 8 . (3)

Finally it must be that a b c 8 0 m o d 8 abc8 \equiv 0 \mod 8 so 1000 a + 100 b + 10 c 0 m o d 8 4 b + 2 c 0 m o d 8 1000a + 100b + 10c \equiv 0 \mod 8 \implies 4b + 2c \equiv 0 \mod 8 (4)

Subtracting (2) from (1) we get 4 a 0 m o d 8 a 0 m o d 2 4a \equiv 0 \mod 8 \implies a \equiv 0 \mod 2 .

Subtracting (2) from (3) we get 2 b 0 m o d 8 b 0 m o d 4 2b \equiv 0 \mod 8 \implies b \equiv 0 \mod 4 .

Subtracting (3) from (4) we get c 0 m o d 8 c \equiv 0 \mod 8 .

Therefore any choice of: a { 2 , 4 , 6 , 8 } , b { 0 , 4 , 8 } , c { 0 , 8 } a \in \{2,4,6,8 \}, b \in \{0,4,8 \}, c \in \{0,8 \} yields a flexible number. And there are 4 × 3 × 2 = 24 4 \times 3 \times 2 = 24 ways of picking.

Donglin Loo
Jan 25, 2018

First, let the desired three-digit number be a b c \overline{abc} .

And, let the single-digit number be p.

The possible outcomes are p a b c \overline{pabc} , a p b c \overline{apbc} , a b p c \overline{abpc} , a b c p \overline{abcp} .

Strategically, let us consider a b c p \overline{abcp} first

a b c p \overline{abcp} = 10 a b c + p 10\overline{abc}+p

a b c \overline{abc} is divisible by 8

\Rightarrow a b c 0 ( m o d 8 ) \overline{abc}\equiv0\pmod{8}

\Rightarrow a b c 0 0 ( m o d 8 ) \overline{abc0}\equiv0\pmod{8}

\Rightarrow a b c p p ( m o d 8 ) \overline{abcp}\equiv p\pmod{8}

Since a b c p \overline{abcp} is divisible by 8

\Rightarrow a b c p 0 ( m o d 8 ) \overline{abcp}\equiv 0\pmod{8}

Therefore, \Rightarrow p 0 ( m o d 8 ) p\equiv 0\pmod{8}

p = 0 p=0 or p = 8 p=8


a b c \overline{abc} is divisible by 8

\Rightarrow a b c \overline{abc} is divisible by 4

\Rightarrow b c \overline{bc} is divisible by 4

In a p b c \overline{apbc} ,

a p b c \overline{apbc} is divisible by 8

p b c \overline{pbc} is divisible by 8

\Rightarrow p b c 0 ( m o d 8 ) \overline{pbc}\equiv 0\pmod{8}

\Rightarrow p 0 ( m o d 8 ) p\equiv 0\pmod{8}

\Rightarrow 100 p 0 ( m o d 8 ) 100p\equiv 0\pmod{8}

\Rightarrow 100 p + b c b c ( m o d 8 ) 100p+\overline{bc}\equiv \overline{bc}\pmod{8}

\Rightarrow p b c b c ( m o d 8 ) \overline{pbc}\equiv \overline{bc}\pmod{8}

\Rightarrow b c 0 ( m o d 8 ) \overline{bc}\equiv 0\pmod{8}

Therefore, b c \overline{bc} is divisible by 8.


In a b p c \overline{abpc}

a b p c \overline{abpc} is divisible by 8

b p c \overline{bpc} is divisible by 8

b c 0 ( m o d 8 ) \overline{bc}\equiv 0\pmod{8}

b 0 c = 100 b + c = ( 10 b + c ) + 90 b = b c + 90 b \overline{b0c}=100b+c=(10b+c)+90b=\overline{bc}+90b

b c 0 ( m o d 8 ) \overline{bc}\equiv 0\pmod{8}

b 0 c 90 b ( m o d 8 ) \overline{b0c}\equiv 90b\pmod{8} ------(1)

p 0 ( m o d 8 ) p\equiv 0\pmod{8}

10 p 0 ( m o d 8 ) 10p\equiv 0\pmod{8} -----------------------(2)

(1)+(2): b p c 90 b ( m o d 8 ) \overline{bpc}\equiv 90b\pmod{8}

b p c 0 ( m o d 8 ) \overline{bpc}\equiv 0\pmod{8}

So, 90 b 0 ( m o d 8 ) 90b\equiv0\pmod{8}

90 b 90b is divisible by 8

Let 90 b = 8 x 90b=8x , such that x is positive integer.

\Rightarrow 45 b = 4 x 45b=4x

\Rightarrow x = 45 b 4 x=\cfrac{45b}{4}

x x is a positive integer.

Hence, b b is divisible by 4

b = 0 b=0 or b = 4 b=4 or b = 8 b=8


We have shown b c \overline{bc} is divisible by 8

b c = 10 b + c \overline{bc}=10b+c

b 0 ( m o d 4 ) b\equiv 0\pmod{4}

\Rightarrow 2 b 0 ( m o d 8 ) 2b\equiv 0\pmod{8}

\Rightarrow 10 b 0 ( m o d 8 ) 10b\equiv 0\pmod{8}

\Rightarrow 10 b + c c ( m o d 8 ) 10b+c\equiv c\pmod{8}

b c \overline{bc} is divisible by 8

\Rightarrow 10 b + c 0 ( m o d 8 ) 10b+c\equiv 0\pmod{8}

Therefore, c 0 ( m o d 8 ) c\equiv 0\pmod{8}

c c is divisible by 8 8

c = 0 c=0 or c = 8 c=8


Combining the results we have,

p = 0 p=0 or p = 8 p=8

b = 0 b=0 or b = 4 b=4 or b = 8 b=8

c = 0 c=0 or c = 8 c=8

a b c \overline{abc} is divisible by 8

b c \overline{bc} is divisible by 8

a b c = 100 a + b c \overline{abc}=100a+\overline{bc}

100 a 100a is divisible by 8

100 4 ( m o d 8 ) 100\equiv4\pmod{8}

200 8 ( m o d 8 ) 200\equiv8\pmod{8}

200 0 ( m o d 8 ) 200\equiv0\pmod{8}

100 a = 200 , 400 , 600 , 800 100a=200,400,600,800

a = 2 , 4 , 6 , 8 a=2,4,6,8


Finally, we have

a = 2 a=2 or a = 4 a=4 or a = 6 a=6 or a = 8 a=8

b = 0 b=0 or b = 4 b=4 or b = 8 b=8

c = 0 c=0 or c = 8 c=8

So, the number of possible values of a b c \overline{abc} = 4 × 3 × 2 4\times 3\times 2 = 24 24

The total number of positive three-digit flexible numbers= 24 24

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...