Flip Flip Flip....

Algebra Level 3

What is the first digit of 5 + 12 19 + 26 33 + 40 2007 + 2014 -5 + 12 - 19 + 26 - 33 + 40 - \ldots - 2007 + 2014 ?

3 4 1 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Isaac Lu
May 8, 2014

Group all negative and group all positive. \text{Group all negative and group all positive.}

( 5 19 33 47 2007 ) + ( 12 + 26 + 40 + + 2014 ) (-5 - 19 - 33 - 47 - … - 2007) + (12 + 26 + 40 + … + 2014)

\color{#FFFFFF}{\text{ }}

Find the number of terms in the series 5 , 19 , 33 , 2007. \text{Find the number of terms in the series} -5, -19, -33, … -2007.

a n = a 1 + ( n 1 ) d \text{a}_\text{n} = \text{a}_1 + (\text{n} - 1)\text{d}

2007 = 5 + ( n 1 ) ( 14 ) -2007 = -5 + (\text{n}-1)(-14)

n = 144 \boxed{n = 144}

Rewriting the expression, \text{Rewriting the expression, }

( 5 + 12 ) + ( 19 + 26 ) + ( 33 + 40 ) + ( 2007 + 2014 ) (-5 + 12) + (-19 + 26) + (-33 + 40) + … (-2007 + 2014)

The expression simplified to \text{The expression simplified to } ( 7 ) + ( 7 ) + ( 7 ) + ( 7 ) (7) + (7) + (7) + … (7)

\color{#FFFFFF}{\text{ }}

Counting ( 5 + 12 ) as the first term, that means \text{Counting }(-5 + 12) \text{ as the first term, that means }

( 2007 + 2014 ) is the n t h term (which is n = 144 ) (-2007 + 2014)\text{ is the } n^{th} \text{term (which is }\color{#0000ff}{\bf{n = 144}})

\color{#FFFFFF}{\text{ }}

Therefore, there are 144 counts of 7’s. And 144 times 7 is equal to \text{Therefore, there are 144 counts of 7’s. And 144 times 7 is equal to } 1 008. \underline{1}008.

The first digit of the sum of the expression is 1. \text{The first digit of the sum of the expression is 1.}

Nishant Sharma
Jun 12, 2014

I solved this way:

Write the sum as S = ( 5 + 12 ) + ( 19 + 26 ) + ( 33 + 40 ) + ( 2007 + 2014 ) S=\;(-5+12)+(-19+26)+(-33+40)+\cdots(-2007+2014)

S = 7 + 7 + S=\;7+7+\cdots upto 144 144 times, since there are 144 144 such pairs. So S = 7 × 144 = 1008 S=\;7\times144=1008 . That implies the answer is 1 1 .

Did the same way and got it right.

Rama Devi - 6 years ago

Exactly the same!:D

Anik Mandal - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...