Flipping Fractions

Calculus Level 3

If t 0 = 10 t_0 = 10 and t n = 1 1 + t n 1 t_n = \dfrac{1}{1 + t_{n - 1}} , then lim n t n = a b c \displaystyle \lim_{n\to\infty} t_n = \frac{\sqrt{a} - b}{c} , where a a , b b , and c c are co-prime positive integers.

Find a + b + c a + b + c .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Jesse Li
Mar 20, 2019

Since = 1 \infty=\infty-1 , t = t 1 t_{\infty}=t_{\infty-1} . Therefore, our equation changes to t = 1 1 + t t_{\infty}=\frac{1}{1+t_{\infty}} .

We can now solve for t t_{\infty} .

t 2 + t 1 = 0 {t_{\infty}}^2+t_{\infty}-1=0 .

t = 5 1 2 t_{\infty}=\frac{\sqrt5-1}{2} .

5 + 1 + 2 = 8 5+1+2=\boxed8 .

Simple and elegant! Thanks for posting.

David Vreken - 2 years, 2 months ago

Log in to reply

No Problem!

Jesse Li - 2 years, 2 months ago
Chew-Seong Cheong
Mar 20, 2019

t 1 = 1 1 + t 0 t 2 = 1 1 + t 1 = 1 1 + 1 1 + t 0 t 3 = 1 1 + 1 1 + 1 1 + t 0 = \begin{aligned} t_1 & = \frac 1{1+t_0} \\ t_2 & = \frac 1{1+t_1} = \frac 1{1+\frac 1{1+t_0}} \\ t_3 & = \frac 1{1+\frac 1{1+\frac 1{1+t_0}}} \\ \cdots & = \cdots \end{aligned}

lim n t n = 1 1 + 1 1 + 1 1 + 1 1 + Let lim n t n = x x = 1 1 + x x 2 + x 1 = 0 x = 1 + 1 + 4 2 = 5 1 2 Since x > 0 \begin{aligned} \implies \lim_{n \to \infty} t_n & = \frac 1{1+\frac 1{1+\frac 1{1+\frac 1{1+\cdots}}}} & \small \color{#3D99F6} \text{Let }\lim_{n \to \infty} t_n = x \\ x & = \frac 1{1+x} \\ x^2 + x - 1 & = 0 \\ \implies x & = \frac {-1+\sqrt {1+4}}2 = \frac {\sqrt 5-1}2 & \small \color{#3D99F6} \text{Since }x > 0 \end{aligned}

Therefore, a + b + c = 5 + 1 + 2 = 8 a+b+c = 5+1+2 = \boxed 8 .

Your solution is much different and better than mine! Thanks for sharing!

David Vreken - 2 years, 2 months ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 2 years, 2 months ago

@David Vreken Sir, could you briefly outline your approach??

Aaghaz Mahajan - 2 years, 2 months ago

Log in to reply

I'll just post my solution so you can take a look at it.

David Vreken - 2 years, 2 months ago

concept of fixed point in dynamical evolution ;)

A Former Brilliant Member - 2 years, 2 months ago

The value of limit is same as the limit of ratio of two consecutive Fibonacci numbers. Fibonacci numbers are hidden in sequence $t_n$

Avinash Pandey - 2 years, 2 months ago
David Vreken
Mar 21, 2019

Let t m = p q t_m = \frac{p}{q} for some positive integers m m , p p , and q q . Then according to the definition of the sequence, t m + 1 = 1 1 + p q = q p + q t_{m + 1} = \frac{1}{1 + \frac{p}{q}} = \frac{q}{p + q} , and t m + 2 = 1 1 + q p + q = p + q p + 2 q t_{m + 2} = \frac{1}{1 + \frac{q}{p + q}} = \frac{p + q}{p + 2q} , so that:

, p q , q p + q , p + q p + 2 q , \dots, \frac{p}{q}, \frac{q}{p + q}, \frac{p + q}{p + 2q}, \dots

Let G G be a sequence such that G n + 2 = G n + G n + 1 G_{n + 2} = G_n + G_{n + 1} , and let G n = p G_n = p and G n + 1 = q G_{n + 1} = q . Then the above sequence becomes:

, G n G n + 1 , G n + 1 G n + 2 , G n + 2 G n + 3 , \dots, \frac{G_n}{G_{n + 1}}, \frac{G_{n + 1}}{G_{n + 2}}, \frac{G_{n + 2}}{G_{n + 3}}, \dots

Since G n G_n and G n + 1 G_{n + 1} are positive, and G n + 2 = G n + G n + 1 G_{n + 2} = G_n + G_{n + 1} , lim n G n G n + 1 \displaystyle \lim_{n\to\infty} \frac{G_n}{G_{n + 1}} converges.

Let u = lim n a n = lim n G n G n + 1 = lim n G n + 1 G n + 2 u = \displaystyle \lim_{n\to\infty} a_n = \displaystyle \lim_{n\to\infty} \frac{G_n}{G_{n + 1}} = \displaystyle \lim_{n\to\infty} \frac{G_{n + 1}}{G_{n + 2}} . Then G n + 2 = G n + G n + 1 G_{n + 2} = G_n + G_{n + 1} becomes G n + 2 G n + 1 = G n G n + 1 + G n + 1 G n + 1 \frac{G_{n + 2}}{G_{n + 1}} = \frac{G_n}{G_{n + 1}} + \frac{G_{n + 1}}{G_{n + 1}} , which becomes 1 G n + 1 G n + 2 = G n G n + 1 + 1 \frac{1}{\frac{G_{n + 1}}{G_{n + 2}}} = \frac{G_n}{G_{n + 1}} + 1 , which becomes 1 u = u + 1 \frac{1}{u} = u + 1 , which solves to u = lim n a n = 5 1 2 u = \displaystyle \lim_{n\to\infty} a_n = \frac{\sqrt{5} - 1}{2} , so that a = 5 a = 5 , b = 1 b = 1 , c = 2 c = 2 , and a + b + c = 8 a + b + c = \boxed{8} .


Note that if t 0 = 1 t_0 = 1 instead, the sequence becomes 1 , 1 2 , 2 3 , 3 5 , 5 8 , 1, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \dots , which contain numbers in the Fibonacci sequence, and lim n F n F n + 1 \displaystyle \lim_{n\to\infty} \frac{F_n}{F_{n + 1}} is also equal to 5 1 2 \frac{\sqrt{5} - 1}{2} .

Ohhh!! This is nice!!

Aaghaz Mahajan - 2 years, 2 months ago
Utkarsh Duvey
Mar 25, 2019

Let y = f ( x ) = 1 1 + x y = f(x) = \frac{1}{1+x} be a function and x = t 0 = 10 x = t_0 = 10 be the starting point

Then t 1 = y = 1 1 + x = 1 1 + 10 = 1 11 t_1 = y = \frac{1}{1 + x} = \frac{1}{1 + 10} = \frac{1}{11} , Now to calculate the next term t 2 t_2 our new input is x = 1 11 x = \frac{1}{11} which can be obtained by projecting point ( 10 , 1 11 ) (10 , \frac{1}{11}) on line y = x y = x and going in this manner we can see that our final value coincides with the intersection of curve y = 1 1 + x y = \frac{1}{1+x} and line y = x y = x i.e. 1 1 + x = x \frac{1}{1+x} = x

x 2 + x 1 = 0 x^2 + x - 1 = 0

x = 5 1 2 x = \frac{\sqrt5 - 1}{2}

which implies , a = 5 , b = 1 ,c = 2 i.e. a + b + c = 8 a + b + c = 8

Nice approach!

David Vreken - 2 years, 2 months ago

This is Banach Fixed Point Theorem in disguise!!!!!

Rohan Shinde - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...