Floating in the complex world

Calculus Level 3

x sin x ( x 2 + a 2 ) ( x 2 + b 2 ) d x = ? \large \int_{-\infty}^{\infty} \dfrac{x \sin x}{(x^{2}+a^{2})(x^{2}+b^{2})} dx = ?

π ( e a e b ) b 2 a 2 \frac {\pi(e^{-a}-e^{-b})}{b^2-a^2} ( b 2 a 2 ) ( e a e b ) π \frac {(b^2-a^2)(e^{-a}-e^{-b})}\pi π \pi e π \frac e \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 19, 2018

I = x sin x ( x 2 + a 2 ) ( x 2 + b 2 ) d x Using the infinite upper semicircle = C i z e i z ( z 2 + a 2 ) ( z 2 + b 2 ) d z of complex plain as contour = C i z e i z b 2 a 2 ( 1 z 2 + a 2 1 z 2 + b 2 ) d z = i b 2 a 2 C ( z e i z ( z + i a ) ( z i a ) z e i z ( z + i b ) ( z i b ) ) d z Only z = i a , z = i b lie within contour. = 2 π b 2 a 2 ( i a e a 2 i a i b e b 2 i b ) By residue theorem = π ( e a e b ) b 2 a 2 \begin{aligned} I & = \int_{-\infty}^{\infty} \frac {x\sin x}{(x^2+a^2)(x^2+b^2)} dx & \small \color{#3D99F6} \text{Using the infinite upper semicircle} \\ & = \int_C \frac {-ize^{iz}}{(z^2+a^2)(z^2+b^2)} dz & \small \color{#3D99F6} \text{of complex plain as contour} \\ & = \int_C \frac {-ize^{iz}}{b^2-a^2}\left(\frac 1{z^2+a^2}-\frac 1{z^2+b^2}\right) dz \\ & = \frac {-i}{b^2-a^2} \int_C \left(\frac {ze^{iz}}{(z+ia)(z-ia)}-\frac {ze^{iz}}{(z+ib)(z-ib)}\right) dz & \small \color{#3D99F6} \text{Only }z=ia, z=ib \text{ lie within contour.} \\ & = \frac {2\pi}{b^2-a^2} \left(\frac {iae^{-a}}{2ia}-\frac {ibe^{-b}}{2ib}\right) & \small \color{#3D99F6} \text{By residue theorem} \\ & = \boxed{\dfrac {\pi(e^{-a}-e^{-b})}{b^2-a^2}} \end{aligned}

Nice solution!!!

Charan Sankar - 3 years, 3 months ago

Sir can u tell me from where to get these types of question and how to understand it easily as I find it a little difficult to understand

A Former Brilliant Member - 3 years, 3 months ago

Log in to reply

I learned it long ago and am relearning it here. All my recent learning is with Brilliant.org and the internet. You should look for books or ask you teachers. I refer to this link . I am also trying to get more reference.

Chew-Seong Cheong - 3 years, 3 months ago
Charan Sankar
Feb 18, 2018

res(f,ia) = e^-a /2(b^2-a^2) res(f,ib) = -e^-b /2(b^2-a^2) Therefore, the integral is equal to pi/(b^2-a^2) * (e^-a-e^-b)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...