Flooded Floors

Algebra Level 4

f ( x ) = i = 1 x + 2 i 1 2 i \displaystyle f(x) = \sum_{i=1}^\infty \bigg\lfloor \frac{x + 2^{i-1} } { 2^i } \bigg\rfloor

A function f : R Z \displaystyle f : \mathbb{R} \to \mathbb{Z} is defined as above. Evaluate: f ( 20.14 ) \displaystyle f(20.14) .

Details and Assumptions :

  • x \displaystyle \lfloor x \rfloor denotes the greatest integer less than or equal to x x .

  • It is 20.14 20.14 and not 2014 2014 .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sudeep Salgia
Jul 11, 2014

The problem is actually based on a single conjecture which is
x 2 + x + 1 2 = x x R \bigg\lfloor \frac{x}{2} \bigg\rfloor + \bigg\lfloor \frac{x+1}{2} \bigg\rfloor = \lfloor x \rfloor \text{ } \forall x \in \mathbb{R} Firstly, I will prove the conjecture.

Let x = I \displaystyle \lfloor x \rfloor = I and { x } = f \displaystyle \{x\} = f , where I I is an integer and f f is a fraction ( 0 f < 1 ) \displaystyle ( 0 \leq f < 1) .
Case 1 1 : I I is even, i.e., I = 2 p I = 2p for some integer p p .
x 2 = I + f 2 = 2 p + f 2 = p + f 2 = p \displaystyle \Rightarrow \big\lfloor \frac{x}{2} \big\rfloor = \big\lfloor \frac{I+f}{2} \big\rfloor = \big\lfloor \frac{2p+f}{2} \big\rfloor = \big\lfloor p +\frac{f}{2} \big\rfloor = p

x + 1 2 = I + f + 1 2 = 2 p + f + 1 2 = p + f + 1 2 = p \displaystyle \Rightarrow \big\lfloor \frac{x+1}{2} \big\rfloor = \big\lfloor \frac{I+f+1}{2} \big\rfloor = \big\lfloor \frac{2p+f+1}{2} \big\rfloor = \big\lfloor p + \frac{f+1}{2} \big\rfloor = p

x 2 + x + 1 2 = p + p = 2 p = I = x \displaystyle \Rightarrow \big\lfloor \frac{x}{2} \big\rfloor + \big\lfloor \frac{x+1}{2} \big\rfloor = p+p =2p = I = \lfloor x \rfloor

Case 2 2 : I I is odd, i.e., I = 2 p + 1 I = 2p+1 for some integer p p .
x 2 = I + f 2 = 2 p + 1 + f 2 = p + f + 1 2 = p \displaystyle \Rightarrow \big\lfloor \frac{x}{2} \big\rfloor = \big\lfloor \frac{I+f}{2} \big\rfloor = \big\lfloor \frac{2p+1+f}{2} \big\rfloor = \big\lfloor p +\frac{f+1}{2} \big\rfloor = p

x + 1 2 = I + f + 1 2 = 2 p + f + 2 2 = p + 1 + f 2 = p + 1 \displaystyle \Rightarrow \big\lfloor \frac{x+1}{2} \big\rfloor = \big\lfloor \frac{I+f+1}{2} \big\rfloor = \big\lfloor \frac{2p+f+2}{2} \big\rfloor = \big\lfloor p+1 + \frac{f}{2} \big\rfloor = p+1

x 2 + x + 1 2 = p + p + 1 = 2 p + 1 = I = x \displaystyle \Rightarrow \big\lfloor \frac{x}{2} \big\rfloor + \big\lfloor \frac{x+1}{2} \big\rfloor = p+p+1 =2p+1 = I = \lfloor x \rfloor .

Hence, Proved. Now we would apply this repeatedly by replacing with different values.

x z z 2 + z + 1 2 = z x z 2 z 4 + z + 2 4 = z 2 x z 4 z 8 + z + 4 8 = z 4 \begin{array}{c}& & \\ x \to z & \Rightarrow \bigg\lfloor \frac{z}{2} \bigg\rfloor + \bigg\lfloor \frac{z+1}{2} \bigg\rfloor = & \lfloor z \rfloor \\ x \to \frac{z}{2} & \Rightarrow \bigg\lfloor \frac{z}{4} \bigg\rfloor + \bigg\lfloor \frac{z+2}{4} \bigg\rfloor = & \bigg\lfloor \frac{z}{2} \bigg\rfloor \\ x \to \frac{z}{4} & \Rightarrow \bigg\lfloor \frac{z}{8} \bigg\rfloor + \bigg\lfloor \frac{z+4}{8} \bigg\rfloor = & \bigg\lfloor \frac{z}{4} \bigg\rfloor \\ \vdots & \vdots & \vdots \\ \end{array}

Adding all of these, we obtain, z + 1 2 + z + 2 4 + z + 4 8 + + = z \bigg\lfloor \frac{z+1}{2} \bigg\rfloor + \bigg\lfloor \frac{z+2}{4} \bigg\rfloor + \bigg\lfloor \frac{z+4}{8} \bigg\rfloor + \dotsb + = \lfloor z \rfloor r = 1 z + 2 r 1 2 r = z \displaystyle \Rightarrow \sum_{r=1}^\infty \bigg\lfloor \frac{z+2^{r-1} }{2^r} \bigg\rfloor = \lfloor z \rfloor

Therefore, f ( x ) = x f ( 20.14 ) = 20 \displaystyle f(x) = \lfloor x \rfloor \Rightarrow f(20.14) = \boxed{20}

Nice problem and really well written solution ¨ \ddot\smile !!

Karthik Kannan - 6 years, 11 months ago

Nicely done! I happened to stumble at the very same problem today morning. :P

Pranav Arora - 6 years, 11 months ago

Nice problem !

Keshav Tiwari - 6 years, 11 months ago

Awesome problem with Cool Solution

Karan Shekhawat - 6 years, 2 months ago

Excellent good sir, if you do not mind i would like to start following you to learn new awesome stuff.

Jesus Ulises Avelar - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...