It's Time For Algebraic Probability!

f 4 ( x 1 , x 2 , x 3 , x 4 ) = 1 i < j 4 ( x i x j + x i x j + x j x i + x j x i ) f_4\left(x_1, x_2, x_3, x_4\right) = \sum\limits_{1 \leq i < j \leq 4} \left(\left\lceil \dfrac{x_i}{x_j}\right\rceil + \left\lfloor \dfrac{x_i}{x_j}\right\rfloor + \left\lceil \dfrac{x_j}{x_i}\right\rceil + \left\lfloor \dfrac{x_j}{x_i}\right\rfloor\right)

Consider the function above, where the domain for each of x 1 , x 2 , x 3 , x 4 x_1, x_2, x_3, x_4 is { 1 , 2 , 3 , 4 } \{1,2,3,4\} .

What is the probability that out of all possible choices in the domain, ( x 1 , x 2 , x 3 , x 4 ) \left( x_1, x_2, x_3, x_4\right) makes f 4 f_4 the minimum?


Bonus : Generalize this for f n f_n , where n 2 n \geq 2 and the domain is { 1 , 2 , , n } . \{1, 2, \dots, n\}.

1 2 \dfrac{1}{2} 1 4 \dfrac{1}{4} 1 8 \dfrac{1}{8} 1 16 \dfrac{1}{16} 33 256 \dfrac{33}{256} None of the other choices

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chris Lewis
Jul 21, 2020

f 4 f_4 is minimised when max x i x j < 2 \max \frac{x_i}{x_j} < 2 ; in this case f 4 = 24 f_4=24 .

To see we can't do better than this, consider two cases:

Case x i = x j x_i=x_j : we have x i x j + x i x j + x j x i + x j x i = 1 + 1 + 1 + 1 = 4 \left \lceil \frac{x_i}{x_j} \right \rceil + \left \lfloor \frac{x_i}{x_j} \right \rfloor + \left \lceil \frac{x_j}{x_i} \right \rceil + \left \lfloor \frac{x_j}{x_i} \right \rfloor = 1+1+1+1=4

Case x i < x j x_i<x_j : x i x j + x i x j + x j x i + x j x i = 0 + 1 + x j x i + x j x i \left \lceil \frac{x_i}{x_j} \right \rceil + \left \lfloor \frac{x_i}{x_j} \right \rfloor + \left \lceil \frac{x_j}{x_i} \right \rceil + \left \lfloor \frac{x_j}{x_i} \right \rfloor = 0+1+\left \lceil \frac{x_j}{x_i} \right \rceil + \left \lfloor \frac{x_j}{x_i} \right \rfloor

Now, since x i < x j x_i<x_j , x j x i 2 \left \lceil \frac{x_j}{x_i} \right \rceil \ge 2 and x j x i 1 \left \lfloor \frac{x_j}{x_i} \right \rfloor \ge 1

so that x i x j + x i x j + x j x i + x j x i 4 \left \lceil \frac{x_i}{x_j} \right \rceil + \left \lfloor \frac{x_i}{x_j} \right \rfloor + \left \lceil \frac{x_j}{x_i} \right \rceil + \left \lfloor \frac{x_j}{x_i} \right \rfloor \ge 4

with equality iff x j x i < 2 \frac{x_j}{x_i} < 2 .

Since the sum is made up of six terms, it follows the least possible total is 24 24 as claimed.

This condition is easily achieved; to count up the possibilities, categorise by the smallest element of { x 1 , x 2 , x 3 , x 4 } \{x_1,x_2,x_3,x_4\} ; call this element x m i n x_{min} :

If x m i n = 1 x_{min}=1 , none of the x i x_i can be greater than 1 1 ; this gives the single possibility { 1 , 1 , 1 , 1 } \{1,1,1,1\} .

If x m i n = 2 x_{min}=2 , none of the x i x_i can be greater than 3 3 ; this gives the 15 15 possibilities { 2 , 2 , 2 , 2 } , { 2 , 2 , 2 , 3 } , { 3 , 3 , 3 , 2 } \{2,2,2,2\},\{2,2,2,3\},\cdots \{3,3,3,2\} .

If x m i n = 3 x_{min}=3 , none of the x i x_i can be greater than 4 4 ; this gives the 15 15 possibilities { 3 , 3 , 3 , 3 } , { 3 , 3 , 3 , 4 } , { 4 , 4 , 4 , 3 } \{3,3,3,3\},\{3,3,3,4\},\cdots \{4,4,4,3\} .

If x m i n = 4 x_{min}=4 , we again have a single possibility, { 4 , 4 , 4 , 4 } \{4,4,4,4\} .

Hence 32 32 sets minimise f 4 f_4 .

There are 4 4 = 256 4^4=256 possible sets; so the probability that f 4 f_4 is minimised is 32 256 = 1 8 \frac{32}{256}=\boxed{\frac18} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...