Floor and Factorial

x 1 ! + x 2 ! + x 3 ! = n \large\left\lfloor \frac { x }{ 1! } \right\rfloor +\left\lfloor \frac { x }{ 2! } \right\rfloor +\left\lfloor \frac { x }{ 3! } \right\rfloor =n

Let x x be integer. The integer n n is achievable if there exists x x satisfying the equation, otherwise it is NOT achievable .

How many positive integers n n , where 1 n 2016 1\le n \le 2016 , is achievable?

Note: n = 224 n=224 is achievable while n = 222 n=222 is NOT achievable.


Inspiration


The answer is 1210.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tran Hieu
Jan 22, 2016

Let's f ( x ) = x 1 ! + x 2 ! + x 3 ! f(x)=\left\lfloor \frac { x }{ 1! } \right\rfloor +\left\lfloor \frac { x }{ 2! } \right\rfloor +\left\lfloor \frac { x }{ 3! } \right\rfloor .

We have f ( x + 1 ) f ( x ) = x + 1 1 ! + x + 1 2 ! + x + 1 3 ! x 1 ! x 2 ! x 3 ! f(x+1)-f(x)=\left\lfloor \frac { x+1 }{ 1! } \right\rfloor +\left\lfloor \frac { x+1 }{ 2! } \right\rfloor +\left\lfloor \frac { x+1 }{ 3! } \right\rfloor -\left\lfloor \frac { x }{ 1! } \right\rfloor -\left\lfloor \frac { x }{ 2! } \right\rfloor -\left\lfloor \frac { x }{ 3! } \right\rfloor

= ( x + 1 1 x 1 ) + ( x + 1 2 x 2 ) + ( x + 1 6 x 6 ) =(\left\lfloor \frac { x+1 }{ 1 } \right\rfloor - \left\lfloor \frac { x }{ 1 }\right\rfloor)+(\left\lfloor \frac { x+1 }{ 2} \right\rfloor-\left\lfloor \frac { x }{ 2 } \right\rfloor) +(\left\lfloor \frac { x+1 }{ 6 } \right\rfloor -\left\lfloor \frac { x }{ 6 } \right\rfloor)

1 + 0 + 0 = 1 \geq 1+0+0 = 1

So we can conclude that f ( a ) f ( b ) a b f(a)\neq f(b) \forall a\neq b . Also with a little calculation we have f ( 1210 ) = 2016 f(1210)=2016 , that means from 1 to 2016 there are 1210 \boxed{1210} value of f ( x ) f(x)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...