Floor Ceiling Floor Ceiling Floor Ceiling 2

Algebra Level 5

x + 1 2 + x + x 1 2 x + 1 2 + x + x 1 2 \left\lfloor x+\dfrac{1}{2}\right\rfloor +\lceil x \rceil+\left\lfloor x-\dfrac{1}{2}\right\rfloor\ge \left\lceil x+\dfrac{1}{2}\right\rceil+\lfloor x \rfloor+\left\lceil x-\dfrac{1}{2}\right\rceil Given that 1 x 1000 1\le x\le 1000 is a real number, find the number of different x x 's that satisfy the above inequality.

If you believe there are an infinite number of x x 's that satisfy the inequality, then submit 1 -1 .


The answer is 999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 15, 2015

Similar solution as part 1, so just cut and paste solution and change a bit.

Let f ( x ) = x + 1 2 + x + x 1 2 \space f(x) = \left \lfloor x + \frac{1}{2} \right \rfloor + \left \lceil x \right \rceil + \left \lfloor x - \frac{1}{2} \right \rfloor , g ( x ) = x + 1 2 + x + x 1 2 \space g(x) = \left \lceil x + \frac{1}{2} \right \rceil + \left \lfloor x \right \rfloor + \left \lceil x - \frac{1}{2} \right \rceil and x = x + { x } = n + δ \space x = \lfloor x \rfloor + \{x\} = n + \delta , where x = n \lfloor x \rfloor = n and { x } = δ \{x\} = \delta are the integral and fractional parts of x x respectively; n n and δ \delta are positive for x [ 1 , 1000 ] x \in [1,1000] .

There are four cases of f ( x ) f(x) and corresponding g ( x ) g(x) as follows:

{ δ = 0 { f ( x ) = n + n + ( n 1 ) g ( x ) = ( n + 1 ) + n + n f ( x ) < g ( x ) 0 < δ < 1 2 { f ( x ) = n + ( n + 1 ) + ( n 1 ) g ( x ) = ( n + 1 ) + n + n f ( x ) < g ( x ) δ = 1 2 { f ( x ) = ( n + 1 ) + ( n + 1 ) + n g ( x ) = ( n + 1 ) + n + n f ( x ) > g ( x ) 1 2 < δ < 1 { f ( x ) = ( n + 1 ) + ( n + 1 ) + n g ( x ) = ( n + 2 ) + n + ( n + 1 ) f ( x ) < g ( x ) \begin{cases} \delta = 0 & \Rightarrow \begin{cases} f(x) = n+n+(n-1) \\ g(x) = (n+1)+n+n \end{cases} & \Rightarrow \color{#D61F06} {f(x) < g(x)} \\ 0 < \delta < \frac{1}{2} & \Rightarrow \begin{cases} f(x) = n+(n+1)+(n-1) \\ g(x) = (n+1)+n+n \end{cases} & \Rightarrow \color{#D61F06} {f(x) < g(x)} \\ \delta = \frac{1}{2} & \Rightarrow \begin{cases} f(x) = (n+1)+(n+1)+n \\ g(x) = (n+1)+n+n \end{cases} & \Rightarrow \color{#3D99F6} {f(x) > g(x)} \\ \frac{1}{2} < \delta < 1 & \Rightarrow \begin{cases} f(x) = (n+1)+(n+1)+n \\ g(x) = (n+2)+n+(n+1) \end{cases} & \Rightarrow \color{#D61F06} {f(x) < g(x)} \end{cases}

Therefore, for each n [ 1 , 1000 ) n \in [1,1000) , there is a case that f ( x ) > g ( x ) \color{#3D99F6} {f(x) > g(x)} or 999 x \boxed{999}x 's that satisfy the inequality.

Moderator note:

It's interesting that these two integer valued functions are never equal, but still leapfrog back and forth.

I've done in the same process too...

Srivardhan Srb - 5 years, 12 months ago
Trevor Arashiro
Jun 15, 2015

x + 1 2 + x + x 1 2 x + 1 2 + x + x 1 2 \left\lfloor x+\dfrac{1}{2}\right\rfloor +\lceil x \rceil+\left\lfloor x-\dfrac{1}{2}\right\rfloor\ge \left\lceil x+\dfrac{1}{2}\right\rceil+\lfloor x \rfloor+\left\lceil x-\dfrac{1}{2}\right\rceil

For now, assume x x is an integer. We have

x + x + x 1 x + 1 + x + x x+x+x-1\geq x+1+x+x

This is obviously false so x x can't be an integer. Now, rearrange the equation.

0 ( x + 1 2 x + 1 2 ) + ( x x ) + ( x 1 2 x 1 2 ) 0\geq \left(\left\lceil x+\dfrac{1}{2}\right\rceil-\left\lfloor x+\dfrac{1}{2} \right\rfloor\right)+\left(\lfloor x \rfloor-\lceil x\rceil \right)+\left(\left\lceil x-\dfrac{1}{2}\right\rceil-\left\lfloor x-\dfrac{1}{2}\right\rfloor \right)

(The equality sign has been change do, it's now facing the correct way).

We already established x x is not an integer, thus ( x x ) = 1 \left(\lfloor x \rfloor-\lceil x\rceil \right)=-1 . The other two sections are either BOTH equal to 0 or 1. If they're both 1, then the sum is greater than 0 and we can't have that.

For both parts to be equal to 0, x = n + 0.5 x=n+0.5 where n ϵ N n\displaystyle\epsilon \Bbb{N} . Since there are 999 of these between 1 and 1000, out answer is 999.

Moderator note:

That's a nice direct comparison.

Note that the inequality sign in the last new line equation should be reversed.

Interesting solution!

Daniel Liu - 5 years, 12 months ago

Did the same way

Vishwak Srinivasan - 5 years, 12 months ago
Daniel Liu
Jun 14, 2015

Amazingly, this problem is exactly the same as Floor Ceiling Floor Ceiling Floor Ceiling

See if you can figure out why x + 1 2 + x + x 1 2 x + 1 2 + x + x 1 2 \left\lfloor x+\dfrac{1}{2}\right\rfloor +\lceil x \rceil+\left\lfloor x-\dfrac{1}{2}\right\rfloor\ge \left\lceil x+\dfrac{1}{2}\right\rceil+\lfloor x \rfloor+\left\lceil x-\dfrac{1}{2}\right\rceil x + 1 2 x x 1 2 x + 1 2 x x 1 2 \iff\left\lfloor x+\dfrac{1}{2}\right\rfloor \lceil x \rceil\left\lfloor x-\dfrac{1}{2}\right\rfloor\ge \left\lceil x+\dfrac{1}{2}\right\rceil\lfloor x \rfloor\left\lceil x-\dfrac{1}{2}\right\rceil

There is an obvious casework solution, and a not-so-obvious, but much more enjoyable, solution by algebraic manipulation.

We are under the assumption, of course, that x 1 |x|\ge 1 .

Moderator note:

Interesting claim.

Spoiler: Solution to my above claim \Large\text{Spoiler: Solution to my above claim}

Rearrange the inequality to x + 1 2 + x 1 2 x x + 1 2 + x 1 2 x \left\lfloor x+\dfrac{1}{2}\right\rfloor +\left\lfloor x-\dfrac{1}{2}\right\rfloor-\lfloor x \rfloor\ge \left\lceil x+\dfrac{1}{2}\right\rceil+\left\lceil x-\dfrac{1}{2}\right\rceil-\lceil x \rceil

I claim that x + 1 2 + x 1 2 x = x + 1 2 x 1 2 x \left\lfloor x+\dfrac{1}{2}\right\rfloor +\left\lfloor x-\dfrac{1}{2}\right\rfloor-\lfloor x \rfloor = \dfrac{\left\lfloor x+\dfrac{1}{2}\right\rfloor \left\lfloor x-\dfrac{1}{2}\right\rfloor}{\lfloor x \rfloor}

Multiplying both sides by x \lfloor x\rfloor gives x x + 1 2 + x x 1 2 x 2 = x + 1 2 x 1 2 \lfloor x \rfloor\left\lfloor x+\dfrac{1}{2}\right\rfloor +\lfloor x \rfloor\left\lfloor x-\dfrac{1}{2}\right\rfloor-\lfloor x \rfloor^2 = \left\lfloor x+\dfrac{1}{2}\right\rfloor \left\lfloor x-\dfrac{1}{2}\right\rfloor x x + 1 2 + x x 1 2 x 2 x + 1 2 x 1 2 = 0 \lfloor x \rfloor\left\lfloor x+\dfrac{1}{2}\right\rfloor +\lfloor x \rfloor\left\lfloor x-\dfrac{1}{2}\right\rfloor-\lfloor x \rfloor^2 - \left\lfloor x+\dfrac{1}{2}\right\rfloor \left\lfloor x-\dfrac{1}{2}\right\rfloor=0 ( x x 1 2 ) ( x + 1 2 x ) = 0 \left(\lfloor x \rfloor - \left\lfloor x-\dfrac{1}{2}\right\rfloor\right)\left(\left\lfloor x+\dfrac{1}{2}\right\rfloor-\lfloor x \rfloor\right)=0

But this is clearly true as when 0 { x } < 1 2 0\le \{x\} < \dfrac{1}{2} then x + 1 2 x = 0 \left\lfloor x+\dfrac{1}{2}\right\rfloor-\lfloor x \rfloor =0 and when 1 2 { x } < 1 \dfrac{1}{2}\le \{x\} < 1 then x x 1 2 = 0 \lfloor x \rfloor - \left\lfloor x-\dfrac{1}{2}\right\rfloor=0 is true.

The exact same process can be done for x + 1 2 + x 1 2 x = x + 1 2 x 1 2 x \left\lceil x+\dfrac{1}{2}\right\rceil+\left\lceil x-\dfrac{1}{2}\right\rceil-\lceil x \rceil = \dfrac{\left\lceil x+\dfrac{1}{2}\right\rceil\left\lceil x-\dfrac{1}{2}\right\rceil}{\lceil x \rceil} so we have proved that version 1 and version 2 of the problem are equivalent.

Daniel Liu - 5 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...