Floor + Ceiling

Calculus Level 3

lim x 0 x + x = ? \large \lim_{x \to 0} \ \left \lfloor |x| \right \rfloor + \left \lceil |x| \right \rceil = \ ?

2 0 Limit does not exist 1 None of these

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pranshu Gaba
Feb 13, 2016

Let f ( x ) = x + x f(x) = \left \lfloor x \right \rfloor + \left \lceil x \right \rceil . We need to find lim x 0 f ( x ) \displaystyle \lim _{x \to 0 } f(|x|) .

Note that f ( x ) f(|x|) is an even function, because x = x |x| = |-x| for all x x , which implies f ( x ) = f ( x ) f(|x|) = f(|-x|) for all x x . This means that f ( x ) f(|x|) is symmetric about the line x = 0 x = 0 .

Hence we can conclude that lim x 0 + f ( x ) = lim x 0 f ( x ) \displaystyle \lim _{x \to 0^{+}} f(|x|) = \displaystyle \lim _{x \to 0^{-}} f(|x|) .

Since both the one-sided limits are equal, the function f ( x ) f(|x|) takes on finite values, and doesn't oscillate very quickly, we can say that the limit exists. We will now find its value.

lim x 0 f ( x ) = lim x 0 + f ( x ) = lim x 0 + f ( x ) = lim x 0 + x + x = lim x 0 + x + lim x 0 + x = 0 + 1 = 1 \begin{aligned} \lim_{x \to 0} f(|x|) & = \lim_{x \to 0^{+}} f(|x|) \\ & = \lim_{x \to 0^{+}} f(x) \\ & = \lim_{x \to 0^{+}} \left \lfloor x \right \rfloor + \left \lceil x \right \rceil \\ & = \lim_{x \to 0^{+}} \left \lfloor x \right \rfloor + \lim_{x \to 0^{+}}\left \lceil x \right \rceil \\ & = 0 + 1 = \boxed{1} & _\square \end{aligned}

Sahil Bansal
Feb 12, 2016

Left Hand Limit = lim x 0 x + x = lim h 0 h + h = lim h 0 h + h = 0 + 1 = 1 \begin{aligned} \text{Left Hand Limit } & = \displaystyle \lim _{ x\to { 0 }^{ - } } \left\lfloor |x| \right\rfloor +\left\lceil |x| \right\rceil \\ & = \lim _{ h\to { 0 } } \ \left\lfloor |-h| \right\rfloor +\left\lceil |-h| \right\rceil \\ & = \lim _{ h\to { 0 } } \ \left\lfloor h \right\rfloor +\left\lceil h \right\rceil \\ & = 0 + 1 \\ & =1 \end{aligned}

Right Hand Limit = lim x 0 + x + x = lim h 0 h + h = lim h 0 h + h = 0 + 1 = 1 \begin{aligned} \text{Right Hand Limit } & = \lim _{ x\to { 0 }^{ + } } \left\lfloor |x| \right\rfloor +\left\lceil |x| \right\rceil \\ & =\lim _{ h\to { 0 } } \left\lfloor |h| \right\rfloor +\left\lceil |h| \right\rceil \\ & = \lim _{ h\to { 0 } } \left\lfloor h \right\rfloor +\left\lceil h \right\rceil \\ & = 0 + 1 \\ & =1 \end{aligned}

LHL = RHL =1

So, lim x 0 x + x = 1. \displaystyle \lim _{ x\to { 0 } } \left\lfloor |x| \right\rfloor +\left\lceil |x| \right\rceil =1.

This is a very tricky question.

Nihar Mahajan - 5 years, 4 months ago

Good solution Sahil. I have edited the Latex in your solution so it is better formatted.

Pranshu Gaba - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...