Floors Are Negligible

Algebra Level 5

x + 2016 x = x + 2016 x \large x+\dfrac{2016}{x}=\lfloor x\rfloor+\dfrac{2016}{\lfloor x\rfloor}

Find the sum of all non-integer real numbers x x that satisfy the equation above.

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is -44.8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sam Bealing
Jul 4, 2016

Relevant wiki: Floor and Ceiling Functions - Problem Solving

Let the fractional part of x x be f f where 0 < f < 1 0<f<1 (as x x is non-integer) and the integer part be y y .

x + 2016 x = x + 2016 x y + f + 2016 y + f = y + 2016 y x+\dfrac{2016}{x}=\lfloor x \rfloor +\dfrac{2016}{\lfloor x \rfloor} \implies y+f+\dfrac{2016}{y+f}=y+\dfrac{2016}{y}

Multiplying through by y ( y + f ) y(y+f) gives:

y 2 ( y + f ) + y f ( y + f ) + 2016 y ( y + f ) y + f = y 2 ( y + f ) + 2016 y ( y + f ) y y f ( y + f ) + 2016 y = 2016 y + 2016 f y f ( y + f ) = 2016 f \cancel{y^2 (y+f)} +y f(y+f)+\dfrac{2016 y \cancel{(y+f)}}{\cancel{y+f}}= \cancel{y^2 (y+f)} +\dfrac{2016 \cancel{y} (y+f)}{\cancel{y}} \implies y f(y+f)+2016y=2016y+2016f \implies y f(y+f)=2016f

As f 0 f \neq 0 we have:

y f ( y + f ) = 2016 f y ( y + f ) = 2016 f = 2016 y 2 y y \cancel{f} (y+f)=2016 \cancel{f} \implies y(y+f)=2016 \implies f=\dfrac{2016-y^2}{y}

We can now use 0 < f < 1 0<f<1 to restrict the values of y y . First consider y > 0 y>0 :

0 < 2016 y 2 y < 1 0 < 2016 y 2 < y 0<\dfrac{2016-y^2}{y}<1 \implies 0<2016-y^2<y

{ 2016 y 2 > 0 y 2 < 2016 y 44 2016 y 2 < y 2016 < y 2 + y y 45 \begin{cases} 2016-y^2 >0 & \implies y^2<2016 \implies y \leq 44 \\ 2016-y^2 < y & \implies 2016<y^2+y \implies y \geq 45 \end{cases}

This shows there are no solutions for y > 0 y>0 . Now we consider y < 0 y<0 (so we have to flip the inequality when we multiply through by y y ):

0 < 2016 y 2 y < 1 y < 2016 y 2 < 0 0<\dfrac{2016-y^2}{y}<1 \implies y<2016-y^2<0

{ 2016 y 2 > y 2016 > y 2 + y y 45 2016 y 2 < 0 y 2 > 2016 y 45 \begin{cases} 2016-y^2>y & \implies 2016>y^2+y \implies y \geq -45 \\ 2016-y^2<0 & \implies y^2>2016 \implies y \leq -45 \end{cases}

This shows us that y = 45 y=-45 is the only solution for y y . Solving for f f gives:

f = 2016 y 2 y f = 2016 ( 45 ) 2 45 = 1 5 f=\dfrac{2016-y^2}{y} \implies f=\dfrac{2016-(-45)^2}{-45}=\dfrac{1}{5}

This gives the value for x x as y + f = 45 + 1 5 = 44 4 5 y+f=-45+\dfrac{1}{5}=-44 \dfrac{4}{5} so the sum of the solutions is:

44 4 5 \boxed{\boxed{-44 \dfrac{4}{5}}}

Moderator note:

Good usage of cases to deal with inequalities. Sometimes, it is better to multiply throughout by the square of the denominator, and at other times it is better to split according to cases.

Nice except you could have done casework on the equation x*floor(x)=2016.

Sal Gard - 4 years, 11 months ago

Log in to reply

Pretty much what I did. From this, you get \floor x 2 < 2016 44 < \abs x < 45 \floor{x}^2 < 2016 \Rightarrow 44 < \abs{x} < 45 . There's only 4 cases to consider with only one producing a valid fractional value of x.

Matt O - 4 years, 7 months ago

Sorry - could you explain the derivation of y >= 45. Specifically the step from 2016 < y^2 + y => y >= 45. Thanks

KMD - 4 years, 11 months ago

Log in to reply

For y > 0 y>0 as y 2 + y y^2+y and y 2 y^2 are increasing as y y \to \infty we need to find the value of y y that exceeds 2016 2016 and we can use this to formulate a condition:

{ y 2 < 2016 , 4 4 2 = 1936 < 2016 < 2025 = 4 5 2 y 44 2016 < y 2 + y , 4 4 2 + 44 = 1980 < 2016 < 2070 = 4 5 2 + 45 y 45 \begin{cases} y^2<2016, \quad 44^2=1936<2016<2025=45^2 & \implies y \leq 44 \\ 2016<y^2+y, \quad 44^2+44=1980<2016<2070=45^2+45 \implies y \geq 45 \end{cases}

This is a contradiction as there is no integer y y such that y 44 y \leq 44 and y 45 y \geq 45 so y 0 y \not >0 .

The argument for y < 0 y<0 follows in a similar fashion however we have to remember to reverse the inequality sign when you multiply by a negative number.

The only integer y y satisfying y 45 y \geq 45 and y 45 y \leq 45 is y = 45 y=45 and this gives us our solution.

Hopefully this clears it up. It takes some thought but I think it should be reasonably clear now. If you have any more questions feel free to ask.

Sam Bealing - 4 years, 11 months ago

Yeah,yeah.Same solution.Good problem,nice solution.Upvoted.:)

rajdeep brahma - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...