Floor & fractional equation

Algebra Level 5

x k + k x = { k { x } } + { { x } k } \left\lfloor \frac { \left\lfloor x \right\rfloor }{ k } \right\rfloor +\left\lfloor \frac { k }{ \left\lfloor x \right\rfloor } \right\rfloor = \left\{ \frac { k }{ \left\{ x \right\} } \right\} +\left\{ \frac { \left\{ x \right\} }{ k } \right\} Equation above has no roots. How many k Z 0 k \in \mathbb Z_{\neq 0} satisfy this condition?

Notations: \left\lfloor \cdot \right\rfloor denotes the floor function and { } \left\{ \cdot \right\} denotes the fractional part function


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ilya Pavlyuchenko
Apr 17, 2020

Left part of equation is integer always, then right part should be integer. Again, right part ( 0 ; 2 ) \in \left( 0;2 \right) (Why don't equal 0 0 ? If sum of two fractional part function equal 0 0 , then both fractional part function should equal to 0 0 , but { { x } k } 0 \left\{ \frac { \left\{ x \right\} }{ k } \right\} \neq 0 , because { x } 0 \left\{ x \right\} \neq 0 ), then left part should ( 0 ; 2 ) \in \left( 0;2 \right) . So, both part of equation should equal 1 1 : x k + k x = { k { x } } + { { x } k } { x k + k x = 1 { k { x } } + { { x } k } = 1 \left\lfloor \frac { \left\lfloor x \right\rfloor }{ k } \right\rfloor +\left\lfloor \frac { k }{ \left\lfloor x \right\rfloor } \right\rfloor =\left\{ \frac { k }{ \left\{ x \right\} } \right\} +\left\{ \frac { \left\{ x \right\} }{ k } \right\} \Leftrightarrow \begin{cases} \left\lfloor \frac { \left\lfloor x \right\rfloor }{ k } \right\rfloor +\left\lfloor \frac { k }{ \left\lfloor x \right\rfloor } \right\rfloor =1 \\ \left\{ \frac { k }{ \left\{ x \right\} } \right\} +\left\{ \frac { \left\{ x \right\} }{ k } \right\} =1 \end{cases} Second equation of system has roots for any k Z k\in\mathbb{Z} . Consider first equation of the system. Let's consider function below. f ( x ) = k x + x k f\left( x \right) = \left| \left\lfloor \frac { k }{ \left\lfloor x \right\rfloor } \right\rfloor +\left\lfloor \frac { \left\lfloor x \right\rfloor }{ k } \right\rfloor \right| If we take x = k ± 1 \left\lfloor x \right\rfloor =k\pm1 (" + + ", if k > 0 k>0 and " - ", if k < 0 k<0 ), then function reach minimum value. Convert function for x = k ± 1 \left\lfloor x \right\rfloor =k\pm1 : k k ± 1 + k ± 1 k = 1 ± 1 k \left| \left\lfloor \frac { k }{ k\pm 1 } \right\rfloor +\left\lfloor \frac { k\pm 1 }{ k } \right\rfloor \right| =\left| \left\lfloor 1\pm \frac { 1 }{ k } \right\rfloor \right|

If k ± 1 k\neq\pm 1 then f min ( x ) = 1 { f }_{ \min{} }\left( x \right)=1 , aslo first equation of system has roots. If k = ± 1 k=\pm1 then f min ( x ) = 2 { f }_{ \min{} }\left( x \right)=2 , aslo equation has no roots. So, answer is 2 \boxed{2} !

Sorry, i think i haven't understood: first of all, how do you prove thet the equation with frac(x) does always have solution, second doubt: when i was solving the problem i saw that the equation with the integer part can always be 1 as long as you choose x s.t. k/2<x<k, therefore i got confused by your answer

Matteo Bianchi - 1 year, 1 month ago

Log in to reply

(Second doubt) If k = ± 1 k = \pm 1 then x ( 0.5 ; 1 ) x\in \left( 0.5;1 \right) for k = 1 k = 1 and x ( 1 ; 0.5 ) x\in \left( -1;-0.5 \right) for k = 1 k = -1 . But then for k = 1 k = 1 x = 0 \left\lfloor x\right\rfloor = 0 and k x \left\lfloor \frac { k }{ \left\lfloor x \right\rfloor } \right\rfloor is undefined. For k = 1 k = -1 x = 1 \left\lfloor x\right\rfloor = -1 and k x + x k = 1 1 + 1 1 = 1 + 1 = 2 1 \left\lfloor \frac { k }{ \left\lfloor x \right\rfloor } \right\rfloor +\left\lfloor \frac { \left\lfloor x \right\rfloor }{ k } \right\rfloor =\left\lfloor \frac { -1 }{ -1 } \right\rfloor +\left\lfloor \frac { -1 }{ -1 } \right\rfloor =\left\lfloor 1 \right\rfloor +\left\lfloor 1 \right\rfloor =2\neq 1 .

Ilya Pavlyuchenko - 1 year, 1 month ago

(First doubt) I haven't thought about how to prove the claim yet. There will be proof soon. In the meantime, check out the chart on the site: https://www.desmos.com/calculator/uzturi1sm7

Ilya Pavlyuchenko - 1 year, 1 month ago

Thank you so much!

Matteo Bianchi - 1 year, 1 month ago

Log in to reply

Don't mention it!

Ilya Pavlyuchenko - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...