Floor Function-1

Algebra Level 3

n 1 ! + n 2 ! + n 3 ! + + n 10 ! = 2019 \left \lfloor \frac n{1!} \right \rfloor + \left \lfloor \frac n{2!} \right \rfloor + \left \lfloor \frac n{3!} \right \rfloor + \cdots + \left \lfloor \frac n{10!} \right \rfloor = 2019

Find the sum of all integer n n satisfying the equation above.

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 1176.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Given that k = 1 10 n k ! = 2019 \displaystyle \sum_{k=1}^{10} \left \lfloor \frac n{k!} \right \rfloor = 2019 , we can estimate n 2019 e 1 1175.011 n \approx \dfrac {2019}{e-1} \approx 1175.011 . Obviously n 1176 n \ge 1176 . Since 7 ! = 5040 7! = 5040 , we need only consider k k from 1 1 to 6 6 , because n k ! = 0 \left \lfloor \dfrac n{k!} \right \rfloor = 0 for k 7 k \ge 7 .

k = 1 6 1176 k ! = 1176 1 + 1176 2 + 1176 6 + 1176 24 + 1176 120 + 1176 720 = 1176 + 588 + 196 + 49 + 9 + 1 = 2019 \begin{aligned} \sum_{k=1}^6 \left \lfloor \frac {1176}{k!} \right \rfloor & = \left \lfloor \frac {1176}1 \right \rfloor + \left \lfloor \frac {1176}2 \right \rfloor + \left \lfloor \frac {1176}6 \right \rfloor + \left \lfloor \frac {1176}{24} \right \rfloor + \left \lfloor \frac {1176}{120} \right \rfloor + \left \lfloor \frac {1176}{720} \right \rfloor \\ & = 1176 + 588 + 196+49+9+1 = 2019 \end{aligned}

If n = 1177 n=1177 , the first term will be 1177 1177 and the sum will be 2020 2020 . Therefore n = 1176 n=1176 is the only solution and the sum of n n is 1176 \boxed{1176} .

Sir, i want to know what's the latex code for the floor function of fraction. I am in trouble. Please reply fast

arifin ikram - 8 months, 3 weeks ago

Log in to reply

Use \left and \right to ensure the ensure the size of brackets including floor function fit. For example \left( \left( \dfrac 12 \right)^\frac 12 \right) ( ( 1 2 ) 1 2 ) \left( \left( \dfrac 12 \right)^\frac 12 \right) . Similarly, \left \lceil \left \lfloor \dfrac 12 \right \rfloor ^\frac 12 \right \rceil 1 2 1 2 \left \lceil \left \lfloor \dfrac 12 \right \rfloor ^\frac 12 \right \rceil .

Chew-Seong Cheong - 8 months, 3 weeks ago
Nitin Kumar
Mar 8, 2020

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...