Floor function and 2016

Algebra Level 5

1 2 2016 , 2 2 2016 , 3 2 2016 , 4 2 2016 , , 2016 2 2016 \large \left\lfloor \frac { { 1 }^{ 2 } }{ 2016 } \right\rfloor ,\left\lfloor \frac { { 2 }^{ 2 } }{ 2016 } \right\rfloor ,\left\lfloor \frac { { 3 }^{ 2 } }{ 2016 } \right\rfloor ,\left\lfloor \frac { { 4 }^{ 2 } }{ 2016 } \right\rfloor , \ldots ,\left\lfloor \frac { { 2016 }^{ 2 } }{ 2016 } \right\rfloor

How many distinct integers are there in the sequence above?

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 1513.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Choi Chakfung
May 6, 2016

n 2 2016 ( n 1 ) 2 2016 = 2 n + 1 2016 2 n + 1 2016 < 1 w h e n n < 1007.5 1007 2 2016 = 503.000496.. > 503 T h e r e f o r e f o r f i r s t 1007 t h t e r m s , t h e n u m b e r i n c l u d e 0 503 w h i c h c o n t a i n 504 d i f f e r e n t n u m b e r . f o r 1008 2016 t h t e r m s , 2 n + 1 2016 > 1 w h e n n > 1007.5 e v e r y n u m b e r w i l l l a r g e r t h a n t h e p r e v i o u s n u m b e r a t l e a s t o n e s u c h a s 1008 2 2016 = 504 > 1007 2 2016 f o r f r o m 1008 2016 , t h e r e a r e 2016 1008 + 1 = 1009 t e r m s T h e r e f o r e , 1009 + 504 = 1513 \frac { { n }^{ 2 } }{ 2016 } -\frac { { (n-1) }^{ 2 } }{ 2016 } =\frac { 2n+1 }{ 2016 } \\ \frac { 2n+1 }{ 2016 } <1\quad when\quad n<1007.5\quad \\ \frac { { 1007 }^{ 2 } }{ 2016 } =503.000496..>503\\ Therefore\quad for\quad first\quad 1007\quad th\quad terms\quad ,\\ \\ the\quad number\quad include\quad 0-503\quad which\quad contain\quad 504\quad different\quad number.\\ for\quad 1008-2016\quad th\quad terms,\quad \frac { 2n+1 }{ 2016 } >1\quad when\quad n>1007.5\quad \\ every\quad number\quad will\quad larger\quad than\quad the\quad previous\quad number\quad at\quad least\quad one\quad \\ such\quad as\quad \frac { { 1008 }^{ 2 } }{ 2016 } =504>\frac { { 1007 }^{ 2 } }{ 2016 } \\ for\quad from\quad 1008-2016\quad ,\quad there\quad are\quad 2016-1008+1=\quad 1009\quad terms\\ \\ Therefore,1009+504=1513

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...