Floor functions go on and on

Given that 44 = 6 \left \lfloor \sqrt{44} \right \rfloor = 6 and 4444 = 66 \left \lfloor \sqrt {4444} \right \rfloor = 66 , what is 4444444444444444 Number of 4s = 16 ? \big \lfloor \underbrace{\sqrt{4444444444444444}}_{\text{Number of 4s}=16} \big \rfloor ?

Bonus: Can you prove why?


The answer is 66666666.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Consider

444 444 Number of 4s = 2 n = 2 111 111 Number of 1s = 2 n = 2 1 0 2 n 1 9 2 1 0 n 3 = 2 × 333 333 Number of 3s = n = 666 666 Number of 6s = n \begin{aligned} \big \lfloor \underbrace{\sqrt{444 \cdots 444}}_{\text{Number of 4s}=2n} \big \rfloor & = 2 \big \lfloor \underbrace{\sqrt{111 \cdots 111}}_{\text{Number of 1s}=2n} \big \rfloor = 2 \left \lfloor \sqrt{\frac {10^{2n}-1}9} \right \rfloor \approx 2 \left \lfloor \frac {10^n}3 \right \rfloor = 2 \times \underbrace{333\cdots333}_{\text{Number of 3s}=n} = \underbrace{666\cdots666}_{\text{Number of 6s}=n}\end{aligned}

For 2 n = 16 2n=16 , the answer 66666666 \boxed{66666666} .

Yajat Shamji
Aug 8, 2020

I noticed the pattern:

For every two 4 4 's added, one 6 6 is added onto the result.

So there are 16 16 4 4 's, therefore:

16 2 \frac{16}{2} = 8 = 8

Therefore, there are 8 8 6 6 's, so the answer is: 66666666 \fbox{66666666}

@Barry Leung

P.S. I can't prove why. Sorry!

Yajat Shamji - 10 months, 1 week ago
Barry Leung
Aug 8, 2020

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...