Floor square sum

Algebra Level 4

S = 1 + 2 + 3 + + 1988 S = \left\lfloor \sqrt{1} \right\rfloor +\left\lfloor \sqrt{2} \right\rfloor +\left\lfloor \sqrt{3} \right\rfloor +\cdots +\left\lfloor \sqrt{1988} \right\rfloor

Find the value of S S .


The answer is 58146.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Akshat Sharda
Mar 21, 2016

We can notice that,

m values { n 2 = n n 2 + 1 = n ( n + 1 ) 2 1 = n m = ( n + 1 ) 2 1 n 2 + 1 = 2 n + 1 \begin{aligned} \color{#3D99F6}{m} \text{ values } \begin{cases} \lfloor \sqrt{n^2} \rfloor & =n \\ \lfloor \sqrt{n^2+1} \rfloor & =n \\ \quad \quad \ldots \\ \lfloor \sqrt{(n+1)^2-1}\rfloor & =n \end{cases} \\ \color{#3D99F6}{m}=(n+1)^2-1-n^2+1 & =2n+1 \end{aligned}

And also see that, 4 4 2 = 1936 < 1988 < 2025 = 4 5 2 44^2=1936<1988<2025=45^2

Therefore, S S can be written as,

S = 1 n 43 n ( 2 n + 1 ) + 44 ( 53 ) = 1 n 43 ( 2 n 2 + n ) + 2332 = 2 1 n 43 n 2 + 1 n 43 n + 2332 = 2 ( 43 ) ( 44 ) ( 87 ) 6 + ( 43 ) ( 44 ) 2 + 2332 = 58146 \begin{aligned} S & =\displaystyle \sum_{1≤n≤43}n(2n+1)+44(53) \\ & = \displaystyle \sum_{1≤n≤43}(2n^2+n)+2332 \\ & = 2 \displaystyle \sum_{1≤n≤43}n^2+ \displaystyle \sum_{1≤n≤43}n+2332 \\ & = 2\cdot \frac{(43)(44)(87)}{6}+\frac{(43)(44)}{2}+2332 \\ & =\boxed{58146}\end{aligned}

Used the same method.

Niranjan Khanderia - 4 years, 4 months ago

why sum(n(2n+1)) ?

Sanjoy Roy - 2 years, 11 months ago

Same method...

Muhamad Fachri Wijaya - 2 years, 2 months ago

Really nicely done!

Krish Shah - 1 year, 2 months ago
Aravind Vishnu
Mar 25, 2016

1988 = 44 4 4 2 = 1936 1988 1935 = 53 53 × 44 = 2332 There are 2 n + 1 numbers that takes the value n. So S = 2332 + n = 1 43 n ( 2 n + 1 ) S = 2332 + n = 1 43 ( 2 n 2 + n ) S = 2332 + n = 1 43 2 n 2 + n = 1 43 n S = 2332 + 43 × 44 × 87 3 + 43 × 44 2 S = 2332 + 54868 + 946 S = 58146 \lfloor\sqrt{1988}\rfloor=44 \\ 44^2=1936 \\1988-1935=53\\ 53 \times 44 = 2332\\ \text{There are }2n+1\text{ numbers that takes the value n. So}\\ S=2332+\sum\limits_{n=1}^{43}{n(2n+1)}\\ S=2332+\sum\limits_{n=1}^{43}{(2n^2+n)}\\ S= 2332+\sum\limits_{n=1}^{43}{2n^2}+\sum\limits_{n=1}^{43}{n}\\ S=2332+\frac{43 \times 44 \times 87}{3}+\frac{43 \times 44}{2}\\ S =2332+54868+946\\ S={\boxed{58146}}

Same here :)

Thanh Viet - 5 years, 2 months ago

Log in to reply

sir can you please tell how would the same question be done if we would be given the sum of these roots and we would be asked to find the last term of the root which is 1988 in this case

Deepansh Jindal - 5 years, 2 months ago

Log in to reply

I understood your question like this: If you were given the final value the how would you compute the last term? Well, one way is to trace back through the steps Find the largest number which is less than the given value S and it must be the largest number ( m ,say.) which can be written as sum of squares up to some n . Now you can compute n 2 and the difference between S and m will be divisible by n + 1. The quotient obtained can be added to n 2 . You have the answer!!! \text{I understood your question like this:}\\ \text{If you were given the final value the how would you compute the last term?}\\ \text{Well, one way is to trace back through the steps}\\ \text{Find the largest number which is less than the given value S and it must be the largest number ( }m\text{ ,say.)}\\ \text{ which can be written as sum of squares up to some } n.\\ \text{Now you can compute } n^2 \text{ and the difference between S and }m\\ \text{ will be divisible by }n+1.\text{ The quotient obtained can be added to } n^2.\\ \text{You have the answer!!!}

Aravind Vishnu - 5 years, 1 month ago

The series, S , shows an apparent pattern. In approaching the problem, what must be done first is to find the greatest perfect square integer < 1988 <1988 . 1988 1988 is an integer \in [ 4 4 2 , 4 5 2 ] [44^{2},45^{2}] , so it is obvious that we are to choose 4 4 2 44^{2} because 1936 < 1988 1936<1988 . Now that we have chosen our upper bound of summation, we proceed to the establishment of our sum. So we would have ( 44 × 53 ) + i = 1 43 ( n ( 2 n + 1 ) ) (44 \times 53)+\sum_{i=1}^{43} (n(2n+1)) = = 2332 + i = 1 43 ( 2 n 2 + n ) 2332+\sum_{i=1}^{43} (2n^{2}+n) = = 2332 + 2 × i = 1 43 n 2 + i = 1 43 n 2332+2 \times \sum_{i=1}^{43} n^{2}+\sum_{i=1}^{43} n . At this point, we will use the formula for the sum of the squares of the first n n natural numbers and for the sum of the first n n natural numbers: S n s q u a r e d = [ n ( n + 1 ) ( 2 n + 1 ) ] 6 ; S n = [ n ( n + 1 ) ] 2 S_{n_{squared}}=\frac{[n(n+1)(2n+1)]}{6}; S_{n}=\frac{[n(n+1)]}{2} , respectively. By plugging in n = 43 n=43 , we yield 2332 + 2 [ ( 43 ) ( 43 + 1 ) ( 2 ( 43 ) + 1 ) 6 ] + ( 43 ) ( 43 + 1 ) 2 2332+2[\frac{(43)(43+1)(2(43)+1)}{6}]+\frac{(43)(43+1)}{2} which simplifies to 2332 + ( 43 × 44 × 29 ) + ( 43 × 22 ) 2332+(43 \times 44 \times 29)+(43 \times 22) = = 58146 58146 . S = 1 + 2 + 3 + . . . + 1988 = 58146 \therefore S=\lfloor\sqrt{1}\rfloor+\lfloor\sqrt{2}\rfloor+\lfloor\sqrt{3}\rfloor+...+\lfloor\sqrt{1988}\rfloor=\boxed{58146}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...