floor

x 2 x 2 = 1999 \big\lfloor x^2 \big\rfloor - \big\lfloor x \big\rfloor^2 = 1999

Find the smallest value of x x which satisfies the equation above. If the answer can be expressed as y \sqrt{y} , then enter y y as your answer.

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 1001999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x 2 x 2 = 1999 ( x + { x } ) 2 x 2 = 1999 x 2 + 2 x { x } + { x } 2 x 2 = 1999 2 x { x } + { x } 2 = 1999 2 x { x } + { x } 2 1999 \begin{aligned} \left \lfloor x^2 \right \rfloor - \left \lfloor x \right \rfloor ^2 & = 1999 \\ \left \lfloor (\lfloor x \rfloor + \{x\})^2 \right \rfloor - \left \lfloor x \right \rfloor ^2 & = 1999 \\ \left \lfloor \lfloor x \rfloor^2 + 2\lfloor x \rfloor \{x\} + \{x\}^2 \right \rfloor - \left \lfloor x \right \rfloor ^2 & = 1999 \\ \left \lfloor 2\lfloor x \rfloor \{x\} + \{x\}^2 \right \rfloor & = 1999 \\ \implies 2\lfloor x \rfloor \{x\} + \{x\}^2 & \ge 1999 \end{aligned}

This implies that the smallest x = 1999 2 = 1000 \lfloor x \rfloor = \left \lceil \dfrac {1999}2 \right \rceil = 1000 . Then, { x } \{x\} is given by:

{ x } 2 + 2000 { x } 1999 = 0 { x } = 2000 + 200 0 2 + 4 1999 2 Note that 0 { x } < 1 = 1000 + 1001999 x = x + { x } = 1000 1000 + 1001999 = 1001999 \begin{aligned} \{x\}^2 + 2000 \{x\} - 1999 = 0 \\ \implies \{x\} & = \frac {-2000 + \sqrt{2000^2+4\cdot 1999}}2 & \small \color{#3D99F6} \text{Note that }0 \le \{x\} < 1 \\ & = - 1000 + \sqrt{1001999} \\ \implies x & = \lfloor x \rfloor + \{x\} \\ & = 1000 - 1000 + \sqrt{1001999} \\ & = \sqrt{1001999} \end{aligned}

y = 1001999 \implies y = \boxed{1001999}


Notations:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...