Floored Vieta’s

Algebra Level 5

4 x 2 40 x + 51 = 0 \large 4x^2 - 40 \lfloor x \rfloor + 51 = 0

Find the sum of the squares of all the real solutions to the above equation.


The answer is 179.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Steven Yuan
Feb 19, 2018

Rewrite the equation as

x = 4 x 2 + 51 40 . \lfloor x \rfloor = \dfrac{4x^2 + 51}{40}.

Let t = x . t = \lfloor x \rfloor. By the equality above, we can write x x as

x = 40 t 51 2 . x = \dfrac{\sqrt{40t - 51}}{2}.

Note that we take the positive square root because if x < 0 , x < 0, then 4 x 2 40 x + 51 > 0. 4x^2 - 40 \lfloor x \rfloor + 51 > 0.

To find bounds on t , t, we use the fact that x x < x + 1. \lfloor x \rfloor \leq x < \lfloor x \rfloor + 1. Substituting our value for t t into this inequality, we get

t 40 t 51 2 4 t 2 40 t + 51 0 ( 2 t 3 ) ( 2 t 17 ) 0 t 3 2 and t 17 2 \begin{aligned} t \leq \dfrac{\sqrt{40t - 51}}{2} \\ 4t^2 - 40t + 51 \leq 0 \\ (2t - 3)(2t - 17) \leq 0 \\ t \geq \dfrac{3}{2} \quad \text{and} \quad t \leq \dfrac{17}{2} \end{aligned}

and

40 t 51 2 < t + 1 4 t 2 32 t + 55 > 0 ( 2 t 11 ) ( 2 t 5 ) > 0 t < 5 2 or t > 11 2 . \begin{aligned} \dfrac{\sqrt{40t - 51}}{2} < t + 1 \\ 4t^2 - 32t + 55 > 0 \\ (2t - 11)(2t - 5) > 0 \\ t < \dfrac{5}{2} \quad \text{or} \quad t > \dfrac{11}{2}. \end{aligned}

The combined bounds for t t are t [ 3 2 , 5 2 ) ( 11 2 , 17 2 ] . t \in \left [\frac{3}{2}, \frac{5}{2} \right ) \cup \left (\frac{11}{2}, \frac{17}{2} \right ]. Since t t is the floor of a number, it is always an integer, so the possible values of t t are 2, 6, 7, and 8.

Plugging these values of t t back into our original expression for x x yields these four solutions:

x = 40 ( 2 ) 51 2 = 29 2 x = 40 ( 6 ) 51 2 = 3 21 2 x = 40 ( 7 ) 51 2 = 229 2 x = 40 ( 8 ) 51 2 = 269 2 . \begin{aligned} x &= \dfrac{\sqrt{40(2) - 51}}{2} = \dfrac{\sqrt{29}}{2} \\ x &= \dfrac{\sqrt{40(6) - 51}}{2} = \dfrac{3 \sqrt{21}}{2} \\ x &= \dfrac{\sqrt{40(7) - 51}}{2} = \dfrac{\sqrt{229}}{2} \\ x &= \dfrac{\sqrt{40(8) - 51}}{2} = \dfrac{\sqrt{269}}{2}. \end{aligned}

The sum of the squares of these solutions is

( 29 2 ) 2 + ( 3 21 2 ) 2 + ( 229 2 ) 2 + ( 269 2 ) 2 = 29 + 189 + 229 + 269 4 = 179 . \left ( \dfrac{\sqrt{29}}{2} \right )^2 + \left ( \dfrac{3 \sqrt{21}}{2} \right )^2 + \left ( \dfrac{\sqrt{229}}{2} \right )^2 + \left ( \dfrac{\sqrt{269}}{2} \right )^2 = \dfrac{29 + 189 + 229 + 269}{4} = \boxed{179}.

Chew-Seong Cheong
Feb 20, 2018

4 x 2 40 x + 51 = 0 \begin{aligned} 4x^2 - 40\lfloor x \rfloor + 51 & = 0 \end{aligned}

x = 10 x 12.75 Note that x = x + { x } { x } = 10 x 12.75 x Note that 0 { x } < 1 \begin{aligned} x & = \sqrt{10\lfloor x \rfloor - 12.75} & \small \color{#3D99F6} \text{Note that }x = \lfloor x \rfloor + \{x\} \\ \implies \{x\} & = \sqrt{10\lfloor x \rfloor - 12.75} - \lfloor x \rfloor & \small \color{#3D99F6} \text{Note that } 0 \le \{x\} < 1 \end{aligned}

0 10 x 12.75 x < 1 x 10 x 12.75 < x + 1 x 2 10 x 12.75 < x 2 + 2 x + 1 \begin{aligned} \implies 0 \le \sqrt{10\lfloor x \rfloor - 12.75} & - \lfloor x \rfloor < 1 \\ \lfloor x \rfloor \le \sqrt{10\lfloor x \rfloor - 12.75} & < \lfloor x \rfloor + 1 \\ \lfloor x \rfloor^2 \le 10\lfloor x \rfloor - 12.75 & < \lfloor x \rfloor^2 +2 \lfloor x \rfloor + 1 \end{aligned}

{ x 2 10 x + 12.75 0 ( x 1.5 ) ( x 8.5 ) 0 2 x 8 x 2 8 x + 13.75 > 0 ( x 2.5 ) ( x 5.5 ) > 0 x 2 x 6 \implies \begin{cases} \lfloor x \rfloor^2 - 10\lfloor x \rfloor + 12.75 & \le 0 & \implies (\lfloor x \rfloor -1.5)(\lfloor x \rfloor -8.5) \le 0 & \implies 2 \le \lfloor x \rfloor \le 8 \\ \lfloor x \rfloor^2 - 8\lfloor x \rfloor + 13.75 & > 0 & \implies (\lfloor x \rfloor -2.5)(\lfloor x \rfloor -5.5) > 0 & \implies \lfloor x \rfloor \le 2 \cup \lfloor x \rfloor \ge 6 \end{cases}

x = { 2 x 2 = 10 ( 2 ) 12.75 = 7.25 6 x 2 = 10 ( 6 ) 12.75 = 47.25 7 x 2 = 10 ( 7 ) 12.75 = 57.25 8 x 2 = 10 ( 8 ) 12.75 = 67.25 \implies \lfloor x \rfloor = \begin{cases} 2 & \implies x^2 = 10(2) - 12.75 = 7.25 \\ 6 & \implies x^2 = 10(6) - 12.75 = 47.25 \\ 7 & \implies x^2 = 10(7) - 12.75 = 57.25 \\ 8 & \implies x^2 = 10(8) - 12.75 = 67.25 \end{cases}

The sum of the squares of all real solutions is 7.25 + 47.25 + 57.25 + 67.25 = 179 7.25+47.25+57.25+67.25 = \boxed{179} .

We know [ x ] x [x]\leq x

Note that [ x ] [x] cannot be negative.

40 [ x ] 40 x \Rightarrow -40[x]\geq -40x

4 x 2 40 [ x ] + 51 4 x 2 40 x + 51 \Rightarrow 4x^{2}-40[x]+51\geq 4x^{2}-40x+51

Let f ( x ) = 4 x 2 40 [ x ] + 51 f(x)=4x^{2}-40[x]+51

and g ( x ) = 4 x 2 40 x + 51 g(x)=4x^{2}-40x+51

f ( x ) g ( x ) \Rightarrow f(x)\geq g(x)

For x 10 x\geq 10

g ( x ) 51 \Rightarrow g(x)\geq 51

f ( x ) 51 \Rightarrow f(x)\geq 51 as f ( x ) g ( x ) f(x)\geq g(x)

But we want the value of x x such that f ( x ) = 0 f(x)=0 which is less than 51

x < 10 \Rightarrow x<10

[ x ] 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 \Rightarrow [x] \in {0,1,2,3,4,5,6,7,8,9}

Since 4 x 2 = 40 [ x ] 51 4x^{2}=40[x]-51

Hence x 2 51 4 , 11 4 , 29 4 , 69 4 , 109 4 , 149 4 , 189 4 , 229 4 269 4 , 309 4 x^{2} \in {\frac{-51}{4},\frac{-11}{4},\frac{29}{4},\frac{69}{4},\frac{109}{4},\frac{149}{4},\frac{189}{4},\frac{229}{4}\frac{269}{4},\frac{309}{4}}

Since x 2 0 x^{2}\geq0 Therefore x 2 29 4 , 69 4 , 109 4 , 149 4 , 189 4 , 229 4 269 4 , 309 4 x^{2} \in \frac{29}{4},\frac{69}{4},\frac{109}{4},\frac{149}{4},\frac{189}{4},\frac{229}{4}\frac{269}{4},\frac{309}{4}

So now we have x 29 4 69 4 , 109 4 , 149 4 , 189 4 , 229 4 , 269 4 , 309 4 x\in \sqrt[ ]{\frac{29}{4}}\sqrt[ ]{\frac{69}{4}}, \sqrt[ ]{\frac{109}{4}},\sqrt[ ]{\frac{149}{4}},\sqrt[ ]{\frac{189}{4}},\sqrt[ ]{\frac{229}{4}},\sqrt[ ]{\frac{269}{4}},\sqrt[ ]{\frac{309}{4}}

Checking against the equation leaves x 29 2 , 189 2 , 229 2 , 269 2 x\in \frac{\sqrt{29}}{2}, \frac{\sqrt{189}}{2},\frac{\sqrt{229}}{2}, \frac{\sqrt{269}}{2}

Therefore the sum of squares is 29 4 + 189 4 + 229 4 + 269 4 = 179 \frac{29}{4}+\frac{189}{4}+\frac{229}{4}+\frac{269}{4}=\boxed{179}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...