4 x 2 − 4 0 ⌊ x ⌋ + 5 1 = 0
Find the sum of the squares of all the real solutions to the above equation.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
4 x 2 − 4 0 ⌊ x ⌋ + 5 1 = 0
x ⟹ { x } = 1 0 ⌊ x ⌋ − 1 2 . 7 5 = 1 0 ⌊ x ⌋ − 1 2 . 7 5 − ⌊ x ⌋ Note that x = ⌊ x ⌋ + { x } Note that 0 ≤ { x } < 1
⟹ 0 ≤ 1 0 ⌊ x ⌋ − 1 2 . 7 5 ⌊ x ⌋ ≤ 1 0 ⌊ x ⌋ − 1 2 . 7 5 ⌊ x ⌋ 2 ≤ 1 0 ⌊ x ⌋ − 1 2 . 7 5 − ⌊ x ⌋ < 1 < ⌊ x ⌋ + 1 < ⌊ x ⌋ 2 + 2 ⌊ x ⌋ + 1
⟹ { ⌊ x ⌋ 2 − 1 0 ⌊ x ⌋ + 1 2 . 7 5 ⌊ x ⌋ 2 − 8 ⌊ x ⌋ + 1 3 . 7 5 ≤ 0 > 0 ⟹ ( ⌊ x ⌋ − 1 . 5 ) ( ⌊ x ⌋ − 8 . 5 ) ≤ 0 ⟹ ( ⌊ x ⌋ − 2 . 5 ) ( ⌊ x ⌋ − 5 . 5 ) > 0 ⟹ 2 ≤ ⌊ x ⌋ ≤ 8 ⟹ ⌊ x ⌋ ≤ 2 ∪ ⌊ x ⌋ ≥ 6
⟹ ⌊ x ⌋ = ⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ 2 6 7 8 ⟹ x 2 = 1 0 ( 2 ) − 1 2 . 7 5 = 7 . 2 5 ⟹ x 2 = 1 0 ( 6 ) − 1 2 . 7 5 = 4 7 . 2 5 ⟹ x 2 = 1 0 ( 7 ) − 1 2 . 7 5 = 5 7 . 2 5 ⟹ x 2 = 1 0 ( 8 ) − 1 2 . 7 5 = 6 7 . 2 5
The sum of the squares of all real solutions is 7 . 2 5 + 4 7 . 2 5 + 5 7 . 2 5 + 6 7 . 2 5 = 1 7 9 .
We know [ x ] ≤ x
Note that [ x ] cannot be negative.
⇒ − 4 0 [ x ] ≥ − 4 0 x
⇒ 4 x 2 − 4 0 [ x ] + 5 1 ≥ 4 x 2 − 4 0 x + 5 1
Let f ( x ) = 4 x 2 − 4 0 [ x ] + 5 1
and g ( x ) = 4 x 2 − 4 0 x + 5 1
⇒ f ( x ) ≥ g ( x )
For x ≥ 1 0
⇒ g ( x ) ≥ 5 1
⇒ f ( x ) ≥ 5 1 as f ( x ) ≥ g ( x )
But we want the value of x such that f ( x ) = 0 which is less than 51
⇒ x < 1 0
⇒ [ x ] ∈ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
Since 4 x 2 = 4 0 [ x ] − 5 1
Hence x 2 ∈ 4 − 5 1 , 4 − 1 1 , 4 2 9 , 4 6 9 , 4 1 0 9 , 4 1 4 9 , 4 1 8 9 , 4 2 2 9 4 2 6 9 , 4 3 0 9
Since x 2 ≥ 0 Therefore x 2 ∈ 4 2 9 , 4 6 9 , 4 1 0 9 , 4 1 4 9 , 4 1 8 9 , 4 2 2 9 4 2 6 9 , 4 3 0 9
So now we have x ∈ 4 2 9 4 6 9 , 4 1 0 9 , 4 1 4 9 , 4 1 8 9 , 4 2 2 9 , 4 2 6 9 , 4 3 0 9
Checking against the equation leaves x ∈ 2 2 9 , 2 1 8 9 , 2 2 2 9 , 2 2 6 9
Therefore the sum of squares is 4 2 9 + 4 1 8 9 + 4 2 2 9 + 4 2 6 9 = 1 7 9
Problem Loading...
Note Loading...
Set Loading...
Rewrite the equation as
⌊ x ⌋ = 4 0 4 x 2 + 5 1 .
Let t = ⌊ x ⌋ . By the equality above, we can write x as
x = 2 4 0 t − 5 1 .
Note that we take the positive square root because if x < 0 , then 4 x 2 − 4 0 ⌊ x ⌋ + 5 1 > 0 .
To find bounds on t , we use the fact that ⌊ x ⌋ ≤ x < ⌊ x ⌋ + 1 . Substituting our value for t into this inequality, we get
t ≤ 2 4 0 t − 5 1 4 t 2 − 4 0 t + 5 1 ≤ 0 ( 2 t − 3 ) ( 2 t − 1 7 ) ≤ 0 t ≥ 2 3 and t ≤ 2 1 7
and
2 4 0 t − 5 1 < t + 1 4 t 2 − 3 2 t + 5 5 > 0 ( 2 t − 1 1 ) ( 2 t − 5 ) > 0 t < 2 5 or t > 2 1 1 .
The combined bounds for t are t ∈ [ 2 3 , 2 5 ) ∪ ( 2 1 1 , 2 1 7 ] . Since t is the floor of a number, it is always an integer, so the possible values of t are 2, 6, 7, and 8.
Plugging these values of t back into our original expression for x yields these four solutions:
x x x x = 2 4 0 ( 2 ) − 5 1 = 2 2 9 = 2 4 0 ( 6 ) − 5 1 = 2 3 2 1 = 2 4 0 ( 7 ) − 5 1 = 2 2 2 9 = 2 4 0 ( 8 ) − 5 1 = 2 2 6 9 .
The sum of the squares of these solutions is
( 2 2 9 ) 2 + ( 2 3 2 1 ) 2 + ( 2 2 2 9 ) 2 + ( 2 2 6 9 ) 2 = 4 2 9 + 1 8 9 + 2 2 9 + 2 6 9 = 1 7 9 .