Paneer Definite Masala 1

Calculus Level 4

0 100 tan 1 ( x ) d x = ? \Large{\displaystyle \int_0^{100} \left \lfloor \tan^{-1} (x) \right \rfloor \mathrm{d}x=\ ?}


The answer is 98.44259.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kishore S. Shenoy
Sep 29, 2015

0 100 tan 1 x d x = 0 tan 1 tan 1 x d x + tan 1 100 tan 1 x d x = 0 tan 1 0 d x + tan 1 100 1 d x = 100 tan 1 98.44259 0 100 tan 1 x d x = 100 tan 1 c \begin{aligned}\displaystyle \int\limits_0^{100} \left \lfloor \tan^{-1} x\right \rfloor \mathrm{d}x&=\int\limits_0^{\tan 1} \left \lfloor \tan^{-1} x\right \rfloor \mathrm{d}x + \int\limits_{\tan 1}^{100} \left \lfloor \tan^{-1} x\right \rfloor \mathrm{d}x \\&=\int\limits_0^{\tan 1} 0 \mathrm{d}x + \int\limits_{\tan 1}^{100} 1 \mathrm{d}x\\ &= 100 - \tan 1\\&\approx 98.44259\end{aligned}\\\huge \boxed{\displaystyle\int\limits_0^{100} \left \lfloor \tan^{-1} x\right \rfloor \mathrm{d}x = 100 - \tan 1^c}

Nice solution and nifty problem. I was thinking of this in such a complicated way, and when I finally realized how simple it was I face-palmed pretty hard.

Andy Hayes - 5 years, 8 months ago

Log in to reply

Thank you !

Kishore S. Shenoy - 5 years, 8 months ago

Did the same way

Samarth Agarwal - 5 years, 8 months ago

Log in to reply

Great! High Five!

Kishore S. Shenoy - 5 years, 8 months ago

Log in to reply

High five!!

Samarth Agarwal - 5 years, 8 months ago

Duplicate Question .

Aditya Kumar - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...