Suppose there are real values of that satisfy the equation above, and we define as the sum of all these solutions. Evaluate .
Details and Assumptions :
and denote the floor function and ceiling function respectively.
denotes the fractional part function: for all real values of . Thus it is always positive. For example, .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
C a s e 1 − I f x i s a n i n t e g e r , t h e n { x } = 0 a n d t h u s a t l e a s t o n e o f ⌊ x ⌋ o r ⌈ x ⌉ m u s t b e z e r o . B u t a s x i s a n i n t e g e r , ⌊ x ⌋ = ⌈ x ⌉ = 0 H e n c e o n l y p o s s i b l e i n t e g e r v a l u e o f x = ⌊ x ⌋ + { x } = 0 C a s e 2 − I f x i s n o t a n i n t e g e r , t h e n ⌈ x ⌉ = ⌊ x ⌋ + 1 . L e t ⌊ x ⌋ = t , s o w e h a v e { x } = 2 0 1 5 t ( t + 1 ) N o w s i n c e 0 < { x } < 1 f o r n o n − i n t e g e r v a l u e s o f x , w e g e t 0 < 2 0 1 5 t ( t + 1 ) < 1 W e n e e d n o t w o r r y a b o u t L H S o f t h e i n e q u a t i o n a s i t i s a l w a y s g r e a t e r t h a n z e r o f o r n o n z e r o i n t e g e r v a l u e s o f t . T h e R H S y i e l d s t 2 + t − 2 0 1 5 < 0 o r ( t + 2 1 ) 2 − 4 8 0 6 1 < 0 , o r − 2 8 0 6 1 − 2 1 < t < 2 8 0 6 1 − 2 1 o r a p p r o x i m a t e l y − 4 5 . 3 9 < t < 4 4 . 3 9 H e n c e i n t e g e r v a l u e s o f t a r e − 4 5 , − 4 4 , . . . , − 2 a n d 1 , 2 , . . . , 4 4 , y i e l d i n g a t o t a l o f 8 8 n o n − i n t e g e r v a l u e s o f x . N o t e t h a t t = ⌊ x ⌋ c a n n o t b e − 1 a s t h a t w o u l d y i e l d t + 1 = ⌈ x ⌉ = 0 , u l t i m a t e l y y i e l d i n g { x } = 0 , i m p l y i n g t h a t x i s a n i n t e g e r w h e r e a s o n l y p e r m i t t e d i n t e g e r v a l u e o f x i s 0 . H e n c e x = ⌊ x ⌋ + { x } = t + 2 0 1 5 t ( t + 1 ) = 2 0 1 5 t 2 + 2 0 1 6 t S u m m i n g t h i s o v e r f r o m t = − 4 5 t o t = − 2 a n d a g a i n f r o m t = 1 t o t = 4 4 , w e g e t S = − 2 0 1 5 2 0 5 3 1 5 0 + 2 0 1 5 2 0 2 5 2 1 0 = − 2 0 1 5 − 2 7 9 4 0 ≅ − 1 3 . 8 6 6 0 0 4 . . . H e n c e n = 8 8 + 1 = 8 9 a n d ⌊ 1 0 0 0 S ⌋ = − 1 3 8 6 7 a n d o u r a n s w e r = 8 9 − 1 3 8 6 7 = − 1 3 7 7 8