Floors and Ceilings 1- Floor and Ceiling Together

Algebra Level 5

x x = 2015 { x } \large \left\lfloor x \right\rfloor \left\lceil x \right\rceil =2015\left\{ x \right\}

Suppose there are n n real values of x x that satisfy the equation above, and we define S S as the sum of all these solutions. Evaluate n + 1000 S n + \lfloor 1000S \rfloor .

Details and Assumptions :

  • x \lfloor x \rfloor and x \lceil x \rceil denote the floor function and ceiling function respectively.

  • { x } \{ x \} denotes the fractional part function: { x } = x x \{ x\} = x - \lfloor x \rfloor for all real values of x x . Thus it is always positive. For example, { 1.7 } \{-1.7\} = = 1.7 ( 2 ) -1.7-(-2) = = 0.3 0.3 .


The answer is -13778.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Led Tasso
Jun 8, 2015

C a s e 1 I f x i s a n i n t e g e r , t h e n { x } = 0 a n d t h u s a t l e a s t o n e o f x o r x m u s t b e z e r o . B u t a s x i s a n i n t e g e r , x = x = 0 H e n c e o n l y p o s s i b l e i n t e g e r v a l u e o f x = x + { x } = 0 C a s e 2 I f x i s n o t a n i n t e g e r , t h e n x = x + 1. L e t x = t , s o w e h a v e { x } = t ( t + 1 ) 2015 N o w s i n c e 0 < { x } < 1 f o r n o n i n t e g e r v a l u e s o f x , w e g e t 0 < t ( t + 1 ) 2015 < 1 W e n e e d n o t w o r r y a b o u t L H S o f t h e i n e q u a t i o n a s i t i s a l w a y s g r e a t e r t h a n z e r o f o r n o n z e r o i n t e g e r v a l u e s o f t . T h e R H S y i e l d s t 2 + t 2015 < 0 o r ( t + 1 2 ) 2 8061 4 < 0 , o r 8061 2 1 2 < t < 8061 2 1 2 o r a p p r o x i m a t e l y 45.39 < t < 44.39 H e n c e i n t e g e r v a l u e s o f t a r e 45 , 44 , . . . , 2 a n d 1 , 2 , . . . , 44 , y i e l d i n g a t o t a l o f 88 n o n i n t e g e r v a l u e s o f x . N o t e t h a t t = x c a n n o t b e 1 a s t h a t w o u l d y i e l d t + 1 = x = 0 , u l t i m a t e l y y i e l d i n g { x } = 0 , i m p l y i n g t h a t x i s a n i n t e g e r w h e r e a s o n l y p e r m i t t e d i n t e g e r v a l u e o f x i s 0. H e n c e x = x + { x } = t + t ( t + 1 ) 2015 = t 2 + 2016 t 2015 S u m m i n g t h i s o v e r f r o m t = 45 t o t = 2 a n d a g a i n f r o m t = 1 t o t = 44 , w e g e t S = 2053150 2015 + 2025210 2015 = 27940 2015 13.866004... H e n c e n = 88 + 1 = 89 a n d 1000 S = 13867 a n d o u r a n s w e r = 89 13867 = 13778 Case\quad 1-\quad If\quad x\quad is\quad an\quad integer,\\ then\quad \left\{ x \right\} =0\quad and\quad thus\quad at\quad least\quad one\quad of\quad \left\lfloor x \right\rfloor \quad or\quad \left\lceil x \right\rceil \quad must\quad \\ be\quad zero.\\ But\quad as\quad x\quad is\quad an\quad integer,\quad \left\lfloor x \right\rfloor =\left\lceil x \right\rceil =0\\ Hence\quad only\quad possible\quad integervalue\quad of\quad x=\left\lfloor x \right\rfloor +\left\{ x \right\} =0\\ \\ \\ \\ Case\quad 2-\quad If\quad x\quad is\quad not\quad an\quad integer,\\ then\quad \left\lceil x \right\rceil =\left\lfloor x \right\rfloor +1.\quad Let\quad \left\lfloor x \right\rfloor =t,\quad so\quad we\quad have\quad \left\{ x \right\} =\frac { t\left( t+1 \right) }{ 2015 } \\ Now\quad since\quad 0<\left\{ x \right\} <1\quad for\quad non-integer\quad values\quad of\quad x,\quad we\quad \\ get\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad 0<\frac { t\left( t+1 \right) }{ 2015 } <1\\ We\quad need\quad not\quad worry\quad about\quad LHS\quad of\quad the\quad inequation\quad as\quad it\quad is\quad \\ always\\ greater\quad than\quad zero\quad for\quad non\quad zero\quad integer\quad values\quad of\quad t.\\ The\quad RHS\quad yields\quad { t }^{ 2 }+t-2015<0\quad or\quad { \left( t+\frac { 1 }{ 2 } \right) }^{ 2 }-\frac { 8061 }{ 4 } <0,\quad or\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad -\frac { \sqrt { 8061 } }{ 2 } -\frac { 1 }{ 2 } \quad <\quad t\quad <\quad \frac { \sqrt { 8061 } }{ 2 } -\frac { 1 }{ 2 } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad or\quad approximately\quad -45.39\quad <\quad t\quad <\quad 44.39\\ Hence\quad integer\quad values\quad of\quad t\quad are\quad -45,-44,...,-2\quad and\quad \\ 1,2,...,44,\quad yielding\quad a\quad total\quad of\\ 88\quad non-integer\quad values\quad of\quad x.\\ Note\quad that\quad t=\left\lfloor x \right\rfloor \quad cannot\quad be\quad -1\quad \\ as\quad that\quad would\quad yield\quad t+1=\left\lceil x \right\rceil =0,\\ ultimately\quad yielding\quad \left\{ x \right\} =0,\quad implying\quad that\quad x\quad is\quad an\quad integer\quad \\ whereas\quad only\quad permitted\\ integer\quad value\quad of\quad x\quad is\quad 0.\\ Hence\quad x=\left\lfloor x \right\rfloor +\left\{ x \right\} \quad =\quad t+\frac { t\left( t+1 \right) }{ 2015 } =\frac { { t }^{ 2 }+2016t }{ 2015 } \\ Summing\quad this\quad over\quad from\quad t=-45\quad to\quad t=-2\quad and\quad again\quad from\quad \\ t=1\quad to\quad t=44,\\ we\quad get\quad S=-\frac { 2053150 }{ 2015 } +\frac { 2025210 }{ 2015 } =-\frac { -27940 }{ 2015 } \cong -13.866004...\\ Hence\quad n=88+1=89\quad and\quad \left\lfloor 1000S \right\rfloor =-13867\quad and\quad our\quad answer\quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 89-13867=\quad \boxed { -13778 } \\ \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...