Fluctuating series!

Calculus Level 3

1 503 , 4 524 , 9 581 , 16 692 , \frac 1{503}, \ \frac 4{524}, \ \frac 9{581}, \ \frac {16}{692}, \ \ldots

The above is the sequence { u n = n 2 500 + 3 n 3 } \left\{u_n = \frac {n^2}{500 + 3n^3}\right\} with n = 1 , 2 , 3 , 4 , . n=1, 2, 3, 4, \ldots.

If the largest term of this sequence can be expressed as a b \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 1578.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anupam Khandelwal
Mar 30, 2015

T h e g e n e r a l t e r m c a n b e w r i t t e n a s T n = n 2 500 + 3 n 3 D i f f e r e n t i a t i n g i t w i t h r e s p e c t t o n a n d p u t t i n g d e r i v a t i v e = 0 w e g e t m a x i m a a t n = 7 S i n c e T 7 = 49 1529 w e g e t a + b = 1578 The\quad general\quad term\quad can\quad be\quad written\quad as\\ \\ \quad \quad \quad \quad \quad \quad \quad { T }_{ n }\quad =\quad \frac { { n }^{ 2 } }{ { 500+\quad 3n }^{ 3 } } \\ Differentiating\quad it\quad with\quad respect\quad to\quad 'n'\\ and\quad putting\quad derivative\quad =\quad 0\quad we\quad get\quad \\ maxima\quad at\quad n=7\\ \\ Since\quad { T }_{ 7 }\quad =\quad \frac { 49 }{ 1529 } \quad we\quad get\\ a+b=1578

Good one there, Anupam!

Vishwak Srinivasan - 6 years, 2 months ago

Why is this level 5? Should be level 1 or 2.

Sharky Kesa - 4 years, 8 months ago

The general term is a n = n 2 3 n 3 + 500 a_n = \dfrac {n^2}{3n^3+500} . Since a n > 0 a_n > 0 , maximum a n a_n occurs when 1 a n \dfrac 1{a_n} is minimum. And the minimum occurs when

d d n ( 1 a n ) = 0 d d n ( 3 n 3 + 500 n 2 ) = 0 d d n ( 3 n + 500 n 2 ) = 0 3 1000 n 3 = 0 3 n 3 = 1000 n 6.934 = 7 the nearest integer. \begin{aligned} \frac d{dn} \left(\frac 1{a_n}\right) & = 0 \\ \frac d{dn} \left(\frac {3n^3+500}{n^2} \right) & = 0 \\ \frac d{dn} \left(3n+\frac {500}{n^2} \right) & = 0 \\ 3 - \frac {1000}{n^3} & = 0 \\ 3n^3 & = 1000 \\ \implies n & \approx 6.934 = \color{#3D99F6}{7 \quad \small \text{the nearest integer.}} \end{aligned}

We check that d 2 d n 2 ( 1 a n ) n = 1000 3 3 > 0 \dfrac {d^2}{dn^2} \left(\dfrac 1{a_n}\right) \bigg|_{n=\sqrt[3]{\frac {1000}3}} > 0 1 a 7 \implies \dfrac 1{a_7} is minimum and hence a 7 = 7 2 3 ( 7 3 ) + 500 = 49 1529 a_7 = \dfrac {7^2}{3(7^3)+500} = \dfrac {49}{1529} is maximum.

a + b = 49 + 1529 = 1578 \implies a + b = 49+1529 = \boxed{1578}


Note that it is easier to evaluate d d n ( 1 a n ) \frac d{dn} \left(\frac 1{a_n}\right) than d d n a n \frac d{dn} a_n .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...