f ( n ) = 1 ( x + n ) ( x + n + 1 ) f(n)=\frac{1}{(x+n)(x+n+1)}

Algebra Level 2

f ( n ) = 1 ( x + n ) ( x + n + 1 ) f(n)=\frac{1}{(x+n)(x+n+1)} for a positive integer n n . If the following always holds regardless of the value of x x , what is the sum of the constants a + b + c a+b+c : f ( 12 ) + f ( 13 ) + f ( 14 ) + + f ( 19 ) = c ( x + a ) ( x + b ) ? f(12)+f(13)+f(14)+\cdots+f(19)=\frac{c}{(x+a)(x+b)}?

40 37 34 31

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

f ( n ) = 1 ( x + n ) ( x + n + 1 ) f(n) = \dfrac{1}{(x+n)(x+n+1)}

f ( n ) = ( x + n + 1 ) ( x + n ) ( x + n ) ( x + n + 1 ) f(n) = \dfrac{(x+n+1) - (x+n)}{(x+n)(x+n+1)}

f ( n ) = 1 x + n 1 x + n + 1 f(n) = \dfrac{1}{x+n} - \dfrac{1}{x+n+1}

f ( 12 ) + f ( 13 ) + + f ( 18 ) + f ( 19 ) = 1 x + 12 1 x + 13 + 1 x + 13 1 x + 14 + + 1 x + 18 1 x + 19 + 1 x + 19 1 x + 20 \Rightarrow f(12) + f(13) + \dots + f(18) + f(19) = \frac{1}{x + 12} - \frac{1}{x+13} + \frac{1}{x + 13} - \frac{1}{x+14} + \ldots + \frac{1}{x + 18} - \frac{1}{x+19} + \frac{1}{x + 19} - \frac{1}{x+20}

= 1 x + 12 1 x + 20 = \dfrac{1}{x + 12} - \dfrac{1}{x+20}

= ( x + 20 ) ( x + 12 ) ( x + 12 ) ( x + 20 ) = \dfrac{(x+20) - (x+12)}{(x+12)(x+20)}

= 8 ( x + 12 ) ( x + 20 ) = \dfrac{8}{(x+12)(x+20)}

Therefore, a + b + c = 8 + 12 + 20 = 40 a + b + c = 8 + 12 + 20 = \boxed{40}

Ravi Bendi
Mar 21, 2014

same as "Siddhartha Srivastava" solution

I am not expert in math. But try to understand problems. Is there any rules applied?

Samar Cxma - 7 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...