Focus on AM-GM

Algebra Level 4

Given that x 1 ; y 2 ; z 3 x\geq1; y\geq2 ; z\geq3 , let h be the maximum value of I I where I = y z x 1 + x z y 2 + x y z 3 x y z . I=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}. Submit your answer as h + 10 \lceil{h}\rceil+10 .

Part of the set


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Jan 27, 2016

Simplified I and we get I = x 1 x + y 2 y + z 3 z I=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z} Using AM-GM, we get x 1 x 1 \frac{\sqrt{x-1}}{x}\leq1 y 2 y 1 2 2 \frac{\sqrt{y-2}}{y}\leq\frac{1}{2\sqrt{2}} z 3 z 1 2 3 \frac{\sqrt{z-3}}{z}\leq\frac{1}{2\sqrt{3}} So I 1 + 1 2 2 + 1 2 3 = h 1.64 I\leq1+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=h\approx1.64 h + 10 = 12 \Rightarrow\lceil{h}\rceil+10=12 The equality holds when ( x ; y ; z ) = ( 2 ; 4 ; 6 ) (x;y;z)=(2;4;6)

@Gurīdo Cuong sir in which numbers have you applied am-gm

Deepansh Jindal - 4 years, 10 months ago

Log in to reply

please help sir

Deepansh Jindal - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...