Football in Rugby Ball?

Geometry Level 4

Find the radius of the largest circle with center ( a , 0 ) (a,0) , ( a > 0 ) (a>0) that can be inscribed in the ellipse x 2 + 4 y 2 = 16 a 2 . x^2+4y^2=16a^2 \; .


Image Source: Wikimedia
11 3 a \dfrac{\sqrt{11}}{3}a 11 3 a \sqrt{\dfrac{11}{3}}a 11 3 a \dfrac{11}{\sqrt 3}a 11 3 a \dfrac{11}{3}a

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohit Ner
Apr 10, 2016

x 2 ( 4 a ) 2 + y 2 ( 2 a ) 2 = 1 \dfrac{{x}^2}{{(4a)}^2}+\dfrac{{y}^2}{{(2a)}^2}=1

Let ( 4 a cos θ , 2 a sin θ ) (4a\cos\theta,2a\sin\theta) be a point on the ellipse.

Equation of normal to the ellipse at θ \theta is given by

4 a x cos θ 2 a y sin θ = ( 4 a ) 2 ( 2 a ) 2 4 a x cos θ 2 a y sin θ = 12 a 2 \dfrac{4ax}{\cos\theta}-\dfrac{2ay}{\sin\theta}={(4a)}^2-{(2a)}^2\\\Rightarrow \dfrac{4ax}{\cos\theta}-\dfrac{2ay}{\sin\theta}={12a}^2

On substituting the point ( a , 0 ) (a,0) in the equation obtained, we get

cos θ = 1 3 sin θ = 2 2 3 \cos\theta=\dfrac{1}{3}\\\Rightarrow \sin\theta=\dfrac{2\sqrt{2}}{3}

So the point where the inscribed circle touches the ellipse is ( 4 a 3 , 4 2 3 ) \left(\dfrac{4a}{3},\dfrac{4\sqrt{2}}{3}\right) . Also the distance of this point from ( a , 0 ) (a,0) give us the radius of the inscribed circle.

r = ( 4 a 3 a ) 2 + ( 4 2 3 0 ) 2 = 11 3 a \begin{aligned}r&=\sqrt{\left(\dfrac{4a}{3}-a\right)^2+\left(\dfrac{4\sqrt{2}}{3}-0\right)^2}\\&\huge\color{#3D99F6}{=\boxed{\sqrt{\dfrac{11}{3}}a}}\end{aligned}

Tanishq Varshney
Apr 10, 2016

Any point on the ellipse is ( 4 a cos t , 2 a sin t ) \large{(4a \cos t, 2a \sin t)} .

We have to maximize the distance between ( a , 0 ) (a,0) and ( 4 a cos t , 2 a sin t ) (4a \cos t, 2a \sin t) .For this t t should be minimum because as t 0 t \to 0 the coordinates tend toward the major axis , so our distance will be maximum.

Now R 2 = ( 4 a cos t a ) 2 + 4 a 2 sin 2 t \large{R^2=(4a \cos t -a)^2+4a^2 \sin^2 t}

R 2 = a 2 + 16 a 2 cos 2 t 8 a 2 cos t + 4 a 2 sin 2 t \large{\Rightarrow R^2 =a^2+16a^2 \cos^2 t -8a^2 \cos t+4a^2 \sin^2 t}

let R 2 = A R^2 =A

Taking its derivative we get d A d t = sin t ( 8 a 2 24 a 2 cos t ) \large{\frac{d A}{d t}=\sin t \left(8a^2-24 a^2 \cos t \right)}

Equating to zero we get sin t = 0 \sin t=0 or cos t = 1 3 \cos t=\frac{1}{3} , by the second derivative test we find that t t is minimized for cos t = 1 3 \cos t=\frac{1}{3}

Thus , R 2 = a 2 ( ( 4 3 1 ) 2 + 4 ( 8 3 ) 2 ) \large{R^2=a^2 \left( (\frac{4}{3}-1)^2+4 \left(\frac{\sqrt{8}}{3} \right)^2 \right)}

R = 11 3 a \large{R=\sqrt{\frac{11}{3}}a}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...