lo g 1 0 ( 2 0 0 0 x y ) − ( lo g 1 0 x ) ( lo g 1 0 y ) lo g 1 0 ( 2 y z ) − ( lo g 1 0 y ) ( lo g 1 0 z ) lo g 1 0 ( z x ) − ( lo g 1 0 z ) ( lo g 1 0 x ) = = = 4 1 0
The system of equations above has two solutions ( x 1 , y 1 , z 1 ) and ( x 2 , y 2 , z 2 ) . Find y 1 + y 2 .
Also try This
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1- Log 2 = Log 5. How did it come ?
Log in to reply
1 − lo g 2 = lo g 1 0 − lo g 2 = lo g 2 1 0 = lo g 5
1= log 10 So log 10. - log 2 Is log(10/2) Which is log5
Will you give the explanation about the equality of x and z,i.e.,x=z ?
Log in to reply
What do you mean?
Log in to reply
Thank u for reply . I understand the fact it will directly follow from 1.a and 2.a . In my previous comment I asked for clarification.but I sort that out.
Problem Loading...
Note Loading...
Set Loading...
It is given that:
⎩ ⎪ ⎨ ⎪ ⎧ lo g 2 0 0 0 x y − lo g x lo g y = 4 lo g 2 y z − lo g y lo g z = 1 lo g z x − lo g z lo g x = 0 . . . ( 1 ) . . . ( 2 ) . . . ( 3 ) ⇒ ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ lo g 2 + 3 + lo g x + lo g y − lo g x lo g y = 4 ⇒ lo g x + lo g y − lo g x lo g y = 4 − 3 − lo g 2 = lo g 5 lo g 2 + lo g y + lo g z − lo g y lo g z = 1 ⇒ lo g y + lo g z − lo g y lo g z = 1 − lo g 2 = lo g 5 lo g z + lo g x − lo g z lo g x = 0 ⇒ lo g z + lo g x = lo g z lo g x . . . ( 1 a ) . . . ( 2 a ) . . . ( 3 a )
From Eq. 1a and Eq. 2a: ⇒ x = z for all y and this is confirmed by Eq. 3a.
From Eq. 1a, a trivial solution is x = z = 1 ⇒ lo g x = 0 and ⇒ 0 + lo g y 1 − 0 = lo g 5 ⇒ y 1 = 5 .
From Eq,3a: ⇒ lo g z + lo g x = lo g z lo g x ⇒ 2 lo g x = ( lo g x ) 2 ⇒ lo g x = 2
Substituting lo g x = 2 in Eq, 1a:
⇒ 2 + lo g y 2 − 2 lo g y 2 = lo g 5 ⇒ lo g y 2 = 2 − lo g 5 = lo g 2 0 ⇒ y 2 = 2 0
Therefore, y 1 + y 2 = 5 + 2 0 = 2 5