Two Thousand Fourteen

Algebra Level 5

log 10 ( 2000 x y ) ( log 10 x ) ( log 10 y ) = 4 log 10 ( 2 y z ) ( log 10 y ) ( log 10 z ) = 1 log 10 ( z x ) ( log 10 z ) ( log 10 x ) = 0 \begin{aligned}\log_{10}(2000xy) - (\log_{10}x)(\log_{10}y) & = & 4 \\ \log_{10}(2yz) - (\log_{10}y)(\log_{10}z) & = & 1 \\ \log_{10}(zx) - (\log_{10}z)(\log_{10}x) & = & 0 \\ \end{aligned}

The system of equations above has two solutions ( x 1 , y 1 , z 1 ) (x_{1},y_{1},z_{1}) and ( x 2 , y 2 , z 2 ) (x_{2},y_{2},z_{2}) . Find y 1 + y 2 y_{1} + y_{2} .

Also try This


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 24, 2015

It is given that:

{ log 2000 x y log x log y = 4 . . . ( 1 ) log 2 y z log y log z = 1 . . . ( 2 ) log z x log z log x = 0 . . . ( 3 ) { log 2 + 3 + log x + log y log x log y = 4 log x + log y log x log y = 4 3 log 2 = log 5 . . . ( 1 a ) log 2 + log y + log z log y log z = 1 log y + log z log y log z = 1 log 2 = log 5 . . . ( 2 a ) log z + log x log z log x = 0 log z + log x = log z log x . . . ( 3 a ) \begin{cases} \log{2000xy}-\log{x}\log{y} = 4 &...(1) \\ \log{2yz}-\log{y}\log{z} = 1 &...(2) \\ \log{zx}-\log{z}\log{x} = 0 &...(3) \end{cases} \\ \Rightarrow \begin{cases} \log{2} + 3 + \log{x}+ \log{y}-\log{x}\log{y} = 4 & \\ \Rightarrow \log{x}+ \log{y}-\log{x}\log{y} = 4 - 3 - \log{2} = \log{5} &...(1a) \\ \log{2} + \log{y} + \log{z} -\log{y}\log{z} = 1 & \\ \Rightarrow \log{y} + \log{z} -\log{y}\log{z} = 1 - \log{2} = \log{5} &...(2a) \\ \log{z} + \log{x}-\log{z}\log{x} = 0 & \\ \Rightarrow \log{z} + \log{x}=\log{z}\log{x} &...(3a) \end{cases}

From Eq. 1a and Eq. 2a: x = z \Rightarrow x=z for all y y and this is confirmed by Eq. 3a.

From Eq. 1a, a trivial solution is x = z = 1 log x = 0 x=z=1\space \Rightarrow \log{x} = 0 and 0 + log y 1 0 = log 5 y 1 = 5 \space \Rightarrow 0 + \log{y_1} - 0 = \log{5} \space \Rightarrow y_1 = 5 .

From Eq,3a: log z + log x = log z log x 2 log x = ( log x ) 2 log x = 2 \Rightarrow \log{z} + \log{x}=\log{z}\log{x} \space \Rightarrow 2 \log{x} = (\log{x})^2 \space \Rightarrow \log{x} = 2

Substituting log x = 2 \log{x} = 2 in Eq, 1a:

2 + log y 2 2 log y 2 = log 5 log y 2 = 2 log 5 = log 20 y 2 = 20 \Rightarrow 2 + \log{y_2}-2\log{y_2} = \log{5} \space \Rightarrow \log{y_2} = 2-\log{5} = \log{20}\\ \Rightarrow y_2 = 20

Therefore, y 1 + y 2 = 5 + 20 = 25 \space y_1+y_2 = 5 + 20 = \boxed{25}

Parth Lohomi - 6 years, 2 months ago

1- Log 2 = Log 5. How did it come ?

Jaimin Pandya - 6 years, 2 months ago

Log in to reply

1 log 2 = log 10 log 2 = log 10 2 = log 5 1-\log{2}=\log{10}-\log{2}= \log{\frac{10}{2}} = \log{5}

Chew-Seong Cheong - 6 years, 2 months ago

1= log 10 So log 10. - log 2 Is log(10/2) Which is log5

Will you give the explanation about the equality of x and z,i.e.,x=z ?

Subhajit Ghosh - 6 years, 1 month ago

Log in to reply

What do you mean?

Chew-Seong Cheong - 6 years, 1 month ago

Log in to reply

Thank u for reply . I understand the fact it will directly follow from 1.a and 2.a . In my previous comment I asked for clarification.but I sort that out.

Subhajit Ghosh - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...