For Chinu - (2)

Calculus Level 2

d d x 1 x 4 sec t d t = ? \Large \dfrac{d}{dx} \int_{1}^{x^4} \sec t \ dt = \ ?

5 x 4 tan x 5 5x^4\tan x^5 4 x 3 tan x 4 4x^3\tan x^4 4 x 3 sec x 4 4x^3\sec x^4 5 x 4 sec x 5 5x^4\sec x^5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Kumar
Feb 5, 2016

By Leibniz rule we have: d d x g ( x ) f ( x ) h ( t ) d t = f ( x ) h ( f ( x ) ) g ( x ) h ( g ( x ) ) \frac { d }{ dx } \int _{ g\left( x \right) }^{ f\left( x \right) }{ h\left( t \right) dt } =f'\left( x \right) h\left( f\left( x \right) \right) -g'\left( x \right) h\left( g\left( x \right) \right)

Here f ( x ) = x 4 , g ( x ) = 1 , h ( t ) = sec ( t ) f\left( x \right) ={ x }^{ 4 },\quad g\left( x \right) =1,\quad h\left( t \right) =\sec \left( t \right)

Therefore, d d x 1 x 4 sec ( t ) d t = 4 x 3 sec ( x 4 ) \displaystyle \frac { d }{ dx } \int _{ 1 }^{ { x }^{ 4 } }{ \sec \left( t \right) dt } =4{ x }^{ 3 }\sec \left( { x }^{ 4 } \right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...