For classical inequalities lovers

Algebra Level 4

Let a , b a, b and c c positive real numbers such that 1 a 2 + 1 b 2 + 1 c 2 = 9 \dfrac{1}{a^2} +\dfrac{1}{b^2} +\dfrac{1}{c^2}=9 . If M M is the maximum value of the following expression 1 2 a + b + 1 2 b + c + 1 2 c + a , \frac{1}{2a+b} +\frac{1}{2b+c} +\frac{1}{2c+a}, enter M 2 M^2 as your answer.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Barack Clinton
Apr 15, 2017

First we show that 3 3 is an upper bound;

Apply AM-GM:

1 2 a + b + 1 2 b + c + 1 2 c + a = 1 a + a + b + 1 b + b + c + 1 c + c + a \frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}=\frac{1}{a+a+b}+\frac{1}{b+b+c}+\frac{1}{c+c+a}

( 1 3 ( a 2 b ) 1 / 3 + 1 3 ( b 2 c ) 1 / 3 + 1 3 ( c 2 a ) 1 / 3 ) \le \left(\frac{1}{3(a^2b)^{1/3}}+\frac{1}{3(b^2c)^{1/3}}+\frac{1}{3(c^2a)^{1/3}}\right)

By Chebyshev:

( 1 a + 1 b + 1 c ) ( 1 a + 1 b + 1 c ) 3 ( 1 a 2 + 1 b 2 + 1 c 2 ) \frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}{3}\le \left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)

Hence,

( 1 a + 1 b + 1 c ) 3 3 \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le3\sqrt{3}

Using Holder one obtains:

( 1 a 2 + 1 b 2 + 1 c 2 ) ( 1 b + 1 c + 1 a ) ( 1 + 1 + 1 ) ( 1 ( a 2 b ) 1 / 3 + 1 ( b 2 c ) 1 / 3 + 1 ( c 2 a ) 1 / 3 = S ) 3 \left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)(1+1+1)\ge\left(\underbrace{\frac{1}{(a^2b)^{1/3}}+\frac{1}{(b^2c)^{1/3}}+\frac{1}{(c^2a)^{1/3}}}_{=S}\right)^3

Make use of ( 2 ) (2) :

9 3 3 3 S 3 9\cdot3\sqrt{3}\cdot3\ge S^3

Or,

( 3 9 ) 1 / 2 S 3 (3^9)^{1/2}\ge S^3

Equivalently,

S 27 S\le\sqrt{27}

Therefore the square of our sum in ( 1 ) (1) is bounded above by:

S 2 9 = 3 \frac{S^2}{9}=3

And setting a 2 = b 2 = c 2 = 1 3 a^2=b^2=c^2=\frac{1}{3} this bound can be attained

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...