Let θ = ∣ m a x ( a r g ( R e ( z − i 1 ) . R e ( z ) + i I m ( z − i 1 ) ) ) ∣
where ∣ z ∣ = 1 and z = i and w = e i θ ,
if x = a w + b w 2 + c , y = a + b w + c w 2 , z = a w 2 + b + c w then
Find the value of ∣ a 2 + b 2 + c 2 x 2 + y 2 + z 2 + 2 a b + 2 b c + 2 a c ∣
(where a , b , c , x , y , z are non zero complex numbers).
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I think the imaginary part would be -(y-1)/x^{2} But it doesn't affect the answer
Problem Loading...
Note Loading...
Set Loading...
Let z = x + i y
a r g ( R e ( z − i 1 ) . R e ( z ) + i I m ( z − i 1 )
= a r g ( R e ( x + i ( y − 1 ) 1 ) . x + i I m ( x + i ( y − 1 ) 1 )
= a r g ( R e ( x 2 + ( y − 1 ) 2 x − i ( y − 1 ) ) . x + i I m ( x 2 + ( y − 1 ) 2 x − i ( y − 1 ) )
= a r g ( x 2 + ( y − 1 ) 2 x . x − i x 2 + ( y − 1 ) 2 ( y − 1 ) )
= a r g ( x 2 + ( y − 1 ) 2 x 2 − x 2 + ( y − 1 ) 2 i ( y − 1 ) )
= a r c t a n ( x 2 − ( y − 1 ) )
m a x ( a r c t a n ( x 2 − ( y − 1 ) ) = 2 π
when x = 0 , y = − 1
⇒ w = i
Substituting the value of w in expression of x , y , z
we can easily get the answer as 1.