For complex lovers

Algebra Level pending

Let θ = m a x ( a r g ( R e ( 1 z i ) . R e ( z ) + i I m ( 1 z i ) ) ) \theta=|max(arg(Re(\frac{1}{z-i}).Re(z)+iIm(\frac{1}{z-i})))|

where z = 1 |z|=1 and z i z \neq i and w = e i θ w=e^{i \theta} ,

if x = a w + b w 2 + c , y = a + b w + c w 2 , z = a w 2 + b + c w x=aw+bw^2+c , y=a+bw+cw^2 ,z=aw^2+b+cw then

Find the value of x 2 + y 2 + z 2 + 2 a b + 2 b c + 2 a c a 2 + b 2 + c 2 |\frac{x^2+y^2+z^2+2ab+2bc+2ac}{a^2+b^2+c^2}|

(where a , b , c , x , y , z a,b,c,x,y,z are non zero complex numbers).


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shubham Garg
Jul 9, 2015

Let z = x + i y z=x+iy

a r g ( R e ( 1 z i ) . R e ( z ) + i I m ( 1 z i ) arg(Re(\frac{1}{z-i}).Re(z)+iIm(\frac{1}{z-i})

= a r g ( R e ( 1 x + i ( y 1 ) ) . x + i I m ( 1 x + i ( y 1 ) ) =arg(Re(\frac{1}{x+i(y-1)}).x+iIm(\frac{1}{x+i(y-1)})

= a r g ( R e ( x i ( y 1 ) x 2 + ( y 1 ) 2 ) . x + i I m ( x i ( y 1 ) x 2 + ( y 1 ) 2 ) =arg(Re(\frac{x-i(y-1)}{x^2+(y-1)^2}).x+iIm(\frac{x-i(y-1)}{x^2+(y-1)^2})

= a r g ( x x 2 + ( y 1 ) 2 . x i ( y 1 ) x 2 + ( y 1 ) 2 ) =arg(\frac{x}{x^2+(y-1)^2}.x-i\frac{(y-1)}{x^2+(y-1)^2})

= a r g ( x 2 x 2 + ( y 1 ) 2 i ( y 1 ) x 2 + ( y 1 ) 2 ) =arg(\frac{x^2}{x^2+(y-1)^2}-\frac{i(y-1)}{x^2+(y-1)^2})

= a r c t a n ( ( y 1 ) x 2 ) =arctan(\frac{-(y-1)}{x^2})

m a x ( a r c t a n ( ( y 1 ) x 2 ) = π 2 max(arctan(\frac{-(y-1)}{x^2})=\frac{\pi}{2}

when x = 0 , y = 1 x=0,y=-1

w = i \Rightarrow w=i

Substituting the value of w w in expression of x , y , z x,y,z

we can easily get the answer as 1.

I think the imaginary part would be -(y-1)/x^{2} But it doesn't affect the answer

Abhishek Pal - 5 years, 11 months ago

Log in to reply

Thank you i have edited it

Shubham Garg - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...