For Comrade Otto Bretscher

Calculus Level 5

Evaluate the flux integral , S G . d S \int \int_{S}\vec{G}.d\vec{S} where S S is the part of the surface z = 8 x 2 y z=8-x^{2}-y inside the cylinder , x 2 + y 2 = 1 x^{2}+y^{2}=1 oriented with normals pointing upward, and G \vec{G} is the vector field , G ( x , y , z ) = 0 , 2 z , 2 y 2 y 2 \vec{G}(x,y,z)=\left \langle 0,2z,2y-2y^{2} \right \rangle

The answer is of the form A π A\pi submit the value of A A


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Otto Bretscher
Mar 15, 2016

Ausgezeichnetes Problem!

S G d S = D 0 , 16 2 x 2 2 y , 2 y 2 y 2 2 x , 1 , 1 d A = D ( 16 2 x 2 2 y 2 ) d A \int_{S}\mathbf{G}\cdot d\mathbf{S}=\int_{D}\langle0,16-2x^2-2y,2y-2y^2\rangle\cdot \langle2x,1,1\rangle dA=\int_{D}(16-2x^2-2y^2) dA = 0 2 π 0 1 ( 16 2 r 2 ) r d r d θ = 15 π =\int_{0}^{2\pi}\int_{0}^{1} (16-2r^2)r\enspace dr \enspace d\theta= \boxed{15}\pi , where D D is the disc x 2 + y 2 1 x^2+y^2\leq 1

Ich bin froh, dass Sie das Problem gern ...

A Former Brilliant Member - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...