A Special Sequence - For my Friend Sharky Kesa!

Algebra Level 4

A sequence of numbers x 1 , x 2 , , x 100 x_{1},x_{2},\ldots ,x_{100} has the property that for every integer k k between 1 and 100 inclusive the number x k x_{k} is k k less than the sum of other 99 numbers. Given that x 50 = m n x_{50}=\dfrac mn , where m m and n n are relatively prime positive integer, find m + n m+n .


The answer is 173.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aareyan Manzoor
Dec 15, 2015

we found that 2 x n = S n 2x_n=S-n where is the sum of all the variables. so: 22 x 1 = S 1 2 x 2 = S 2 2 x 99 = S 99 2 x 100 = S 100 \begin{array}{c}22x_1&=&S&-&1\\ 2x_2&=&S&-&2\\ \dots\dots\\ 2x_{99}&=&S&-&99\\ 2x_{100}&=&S&-&100\end{array} we add them to find 2 ( x 1 + x 2 + . . . + x 99 + x 100 ) = 101 S ( 1 + 2 + . . + 99 + 100 ) 2(x_1+x_2+...+x_{99}+x_{100})=101S-(1+2+..+99+100) 2 S = 100 S 5050 2S=100S-5050 S = 5050 98 = 2525 49 S=\frac{5050}{98}=\frac{2525}{49} we generalize for x n x_n : x n = S n 2 = 2525 49 n 2 = 2525 49 n 98 x_n=\frac{S-n}{2}=\frac{\frac{2525}{49}-n}{2}=\frac{2525-49n}{98} put n=50 x 50 = 2525 49 50 98 = 75 98 x_{50}=\frac{2525-49*50}{98}=\frac{75}{98} and 75 + 98 = 173 75+98=\boxed{173}

Simple Explanation ! +1

Venkata Karthik Bandaru - 5 years, 5 months ago
Julian Poon
Dec 15, 2015

It is easy to see that 2 x k + k = S 2x_k+k=S , where S = n = 1 100 x n \displaystyle S=\sum _{n=1}^{100}x_n .

So S = 2 x k + k = 2 x k + 1 + k + 1 S=2x_k+k=2x_{k+1}+k+1

x k + 1 = 1 2 ( 2 x k 1 ) x_{k+1}=\frac{1}{2}\left(2x_k-1\right)

This gives x k = x 1 k 1 2 x_k=x_1-\frac{k-1}{2}

Now,

2 x 1 + 1 = S = n = 1 100 ( x 1 n 1 2 ) = 100 x 1 2475 2x_1+1=S=\sum _{n=1}^{100}\left(x_1-\frac{n-1}{2}\right)=100x_1-2475 x 1 = 2476 98 x_1=\frac{2476}{98}

x 50 = x 1 49 2 = 75 98 x_{50}=x_1-\frac{49}{2}=\boxed{\frac{75}{98}}

Moderator note:

Good observation with comparing the terms.

I did the same

Shreyash Rai - 5 years, 6 months ago

How is 2 x k + k = S 2x_k + k = S ?

neelesh vij - 5 years, 6 months ago

Log in to reply

x k = x 1 + x 2 + . . . + x k 1 + x k + 1 + . . + x 100 k x_k=x_1+x_2+...+x_{k-1}+x_{k+1}+..+x_{100}-k add x k + k x_k+k to both sides: 2 x k + k = x 1 + x 2 + . . . . + x 99 + x 100 2x_k+k=x_1+x_2+....+x_{99}+x_{100} 2 x k + k = S 2x_k+k=S in the case this helps, feel free to upvote my solution.

Aareyan Manzoor - 5 years, 6 months ago

Log in to reply

Got it thanks!!

neelesh vij - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...