A number theory problem by Priyanshu Mishra

Suppose that a a and b b are positive integers such that

p = b 4 2 a b 2 a + b \large\ p=\frac { b }{ 4 } \sqrt { \frac { 2a-b }{ 2a+b } }

is a prime number . What is the maximum possible value of p p ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

This is probably not the simplest way to do this, but here is what I did:

There is a rational number k > 0 k>0 such that k = ( 2 a b ) / ( 2 a + b ) k=\sqrt{(2 a - b)/(2 a + b)} . Let k = x / y k = x/y for integers x > 0 , y > 0 , g c d ( x , y ) = 1 x > 0, y > 0, gcd(x,y)=1 . So a = b ( 1 + k 2 ) / ( 2 ( 1 k 2 ) ) a=b (1+k^2)/(2(1-k^2)) , and p = b k / 4 p = b k / 4 . b k = b x / y b k = b x / y is an integer, so b b is divisible by y y , say b = b 1 y b = b_1 y , for integer b 1 b_1 , i.e., 4 p = b 1 x 4 p = b_1 x . Thus, (1) p b 1 p | b_1 or (2) p x p | x .

Case 1: x = p x 1 x = p x_1 , so 4 = b 1 x 1 4 = b_1 x_1 , and we have three cases ( b 1 , x 1 ) = { ( 1 , 4 ) , ( 2 , 2 ) , ( 4 , 1 ) } (b_1, x_1) = \{(1,4),(2,2),(4,1)\} . Tracking back, we three cases for a , b a,b in terms of p , y p, y .

[ { { a y ( 16 p 2 + y 2 ) 2 ( y 2 16 p 2 ) , b y } , { a y ( 4 p 2 + y 2 ) y 2 4 p 2 , b 2 y } , { a 2 y ( p 2 + y 2 ) y 2 p 2 , b 4 y } } ] \text{}\left[\left\{\left\{a\to \frac{y \left(16 p^2+y^2\right)}{2 \left(y^2-16 p^2\right)},b\to y\right\},\left\{a\to \frac{y \left(4 p^2+y^2\right)}{y^2-4 p^2},b\to 2 y\right\},\left\{a\to \frac{2 y \left(p^2+y^2\right)}{y^2-p^2},b\to 4 y\right\}\right\}\right]

Case 2: b 1 = p b 2 b_1 = p b_2 , so 4 = b 2 x 4 = b_2 x , and we have three cases ( b 2 , x ) = { ( 1 , 4 ) , ( 2 , 2 ) , ( 4 , 1 ) } (b_2, x) = \{(1,4),(2,2),(4,1)\} . Tracking back, we three cases for a , b a,b in terms of p , y p, y .

[ { { a p y ( y 2 + 16 ) 2 ( y 2 16 ) , b p y } , { a p y ( y 2 + 4 ) y 2 4 , b 2 p y } , { a 2 p y ( y 2 + 1 ) y 2 1 , b 4 p y } } ] \text{}\left[\left\{\left\{a\to \frac{p y \left(y^2+16\right)}{2 \left(y^2-16\right)},b\to p y\right\},\left\{a\to \frac{p y \left(y^2+4\right)}{y^2-4},b\to 2 p y\right\},\left\{a\to \frac{2 p y \left(y^2+1\right)}{y^2-1},b\to 4 p y\right\}\right\}\right]

So we want the largest prime p p such that there exists an integer y > 0 y>0 so that at least one of the six expressions above for a a is a positive integer. Note that each of these six cases is covered by the single case

[ a = y ( 4 p 2 + y 2 ) y 2 4 p 2 ] , y > 2 p \text{}\left[a=\frac{\text{y} \left(4 p^2+\text{y}^2\right)}{\text{y}^2-4 p^2}\right], y>2 p

(Reduce each of the six cases to this by considering y as even or a multiple of p p ).

Let u = 2 p + y , v = 2 p + y u = -2 p + y, v = 2 p + y . Then we have ( u + v ) 3 / ( 4 u v ) , v u = 4 p , u > 0 (u+v)^3/(4 u v), v - u = 4 p, u > 0 , which implies ( u 3 + v 3 ) / ( u v ) (u^3 + v^3)/(u v) is an integer. Thus, u v 3 = ( u + 4 p ) 3 u | v^3 = (u + 4p)^3 , so u 2 6 p 3 u | 2^6 p^3 . Thus, v u 3 = ( v 4 p ) 3 v | u^3 = (v - 4p)^3 , so v 2 6 p 3 v | 2^6 p^3 . There are 28 factors of 2 6 p 3 2^6 p^3 , which we can list out. Then, we consider all 378 (28 choose 2) pairs of such factors and solve for p p such that the difference between these factors is 4 p 4 p . We see that the possible values of p p are 2,3,5,7,17. We then check these with

[ a = y ( 4 p 2 + y 2 ) y 2 4 p 2 ] , y > 2 p \text{}\left[a=\frac{\text{y} \left(4 p^2+\text{y}^2\right)}{\text{y}^2-4 p^2}\right], y>2 p

and see that the largest prime that works is 5, for example take a = 39 , b = 30 a=39, b=30 . I used Mathematica to handle the 378 cases.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...