For Ramanujan

2 6 4 1920 \Large 26^{4^{1920}}

If the last two digits of the number above are m n \overline{mn} . enter the answer as m × n 10 m\times n-10 .


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Anirudh Sreekumar
Apr 26, 2019

2 6 4 1920 = ( 50 24 ) 4 1920 ( 50 24 ) 4 1920 ( m o d 100 ) 2 4 4 1920 ( m o d 100 ) 2 4 n ( m o d 100 ) { 76 : if n is even 24 : if n is odd 2 4 4 1920 ( m o d 100 ) 76 m n = 76 m × n 10 = 7 × 6 10 = 32 \begin{aligned}26^{4^{1920}}&=(50-24)^{4^{1920}}\\ (50-24)^{4^{1920}}\pmod{100}&\equiv24^{4^{1920}}\pmod{100}\\ 24^n\pmod{100}&\equiv\begin{cases}76 : \text{ if n is even}\\ 24: \text{ if n is odd}\end{cases}\\ \implies24^{4^{1920}}\pmod{100}&\equiv 76\\ \overline{mn}&=76\\ m\times n-10&=7\times6-10=\color{#EC7300}\boxed{\color{#333333}32}\end{aligned}

Chew-Seong Cheong
Apr 26, 2019

Let N = 2 6 4 1920 N = 26^{4^{1920}} . We need to find N m o d 100 N \bmod 100 . Using Chinese remainder theorem on factors 4 and 25, we have:

Factor 4: N 2 6 4 1920 0 (mod 4) N \equiv 26^{4^{1920}} \equiv 0 \text{ (mod 4)}

Factor 25: N 2 6 4 1920 ( 25 + 1 ) 4 1920 1 (mod 25) N \equiv 26^{4^{1920}} \equiv (25+1)^{4^{1920}} \equiv 1 \text{ (mod 25)} , N 25 n + 1 \implies N \equiv 25n + 1 , where n n is an integer. Then 25 n + 1 0 (mod 4) 25n + 1 \equiv 0 \text{ (mod 4)} , n 3 \implies n \equiv 3 and N 3 × 25 + 1 76 (mod 100) N \equiv 3\times 25 + 1 \equiv 76 \text{ (mod 100)} . Therefore, m n 10 = 32 mn-10 = \boxed {32} .

Chris Lewis
Apr 26, 2019

We want 2 6 4 1920 ( m o d 100 ) 26^{4^{1920}} \pmod{100} .

Write n = 4 1920 n=4^{1920} .

We have 2 6 n 1 ( m o d 25 ) 26^n \equiv 1 \pmod{25} and 2 6 n 0 ( m o d 4 ) 26^n \equiv 0 \pmod4 . By the Chinese Remainder Theorem, these two congruences have a unique solution modulo 100 100 ; by inspection this is 76 76 , so these are the last two digits we need. The answer is then 7 × 6 10 = 32 7 \times 6-10=\boxed{32} .

32 32 , the young age at which Ramanujan died :'(

Mr. India - 2 years, 1 month ago

Since 2 6 2 676 26^2\Rightarrow 676 , and 2 6 3 = 17576 26^3=17576 , the last two digits are 76. Therefore 7 × 6 10 32 7\times6-10\Rightarrow 32 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...