Apply Partial Fractions With Complex Numbers

Algebra Level 4

x = 1 10 1 x 2 + x 49 + 7 ( 2 x + 1 ) i \large\sum_{x=1}^{10} \dfrac{1}{x^2+x-49+7(2x+1)i}

If the above summation in the simplest form can be expressed as ( a + i b ) c \dfrac{-(a+ib)}{c} where a , b , c a,b,c are positive integers and gcd ( a , b ) = 1 \gcd(a,b)=1 , compute a + b + c a+b+c .

Clarification: i = 1 i=\sqrt{-1} .


The answer is 486.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nihar Mahajan
Feb 29, 2016

First let us try to factorize the denom. of the summation expression.

x 2 + x + ( 14 x + 7 ) i 49 = x 2 + x + 14 x i + 7 i 49 = x 2 + x + 14 x i + 7 i + i 2 49 i 2 = 1 = x 2 + x + 7 x i + 7 x i + 7 i + i 2 49 = x ( x + 1 + 7 i ) + 7 i ( x + 1 + 7 i ) = ( x + 7 i ) ( x + 1 + 7 i ) x^2+x+(14x+7)i -49 \\ = x^2+x+14xi+7i-49 \\ = x^2+x+14xi+7i+i^249 \dots \because \ i^2=-1 \\ = x^2+x+7xi+7xi+7i+i^249 \\ = x(x+1+7i)+7i(x+1+7i) \\ = (x+7i)(x+1+7i)

Now let us substitute this beautiful factorization in the summation expression:

x = 1 10 1 ( x + 7 i ) ( x + 1 + 7 i ) \sum_{x=1}^{10} \dfrac{1}{(x+7i)(x+1+7i)}

Now this reduces to simple telescopic summation:

x = 1 10 x + 1 + 7 i ( x + 7 i ) ( x + 7 i ) ( x + 1 + 7 i ) = x = 1 10 1 x + 7 i 1 x + 1 + 7 i = 1 1 + 7 i 1 2 + 7 i + 1 2 + 7 i 1 3 + 7 i + 1 3 + 7 i 1 10 + 7 i + 1 10 + 7 i 1 11 + 7 i = 1 1 + 7 i 1 11 + 7 i Multiplying numerator and denominator by the complex conjugate of the denominator , we get: = 1 7 i 1 2 + 7 2 11 7 i 1 1 2 + 7 2 = 1 7 i 5 11 7 i 170 = 170 1190 i 550 + 350 i 8500 = 380 840 i 8500 = 19 42 i 425 \sum_{x=1}^{10} \dfrac{x+1+7i-(x+7i)}{(x+7i)(x+1+7i)} \\ = \sum_{x=1}^{10} \dfrac{1}{x+7i} - \dfrac{1}{x+1+7i} \\ = \dfrac{1}{1+7i}-\dfrac{1}{2+7i}+\dfrac{1}{2+7i}-\dfrac{1}{3+7i}+\dfrac{1}{3+7i}-\dots-\dfrac{1}{10+7i}+\dfrac{1}{10+7i}-\dfrac{1}{11+7i} \\ =\dfrac{1}{1+7i}-\dfrac{1}{11+7i} \\ \text{Multiplying numerator and denominator by the complex conjugate of the denominator , we get:} \\ =\dfrac{1-7i}{1^2+7^2} - \dfrac{11-7i}{11^2+7^2} \\ =\dfrac{1-7i}{5} - \dfrac{11-7i}{170} \\ = \dfrac{170-1190i-550+350i}{8500} \\=\dfrac{-380-840i}{8500} \\ = \boxed{\dfrac{-19-42i}{425}}

Hence , a + b + c = 19 + 42 + 425 = 486 a+b+c=19+42+425=\boxed{486} .

Moderator note:

Good explanation of the telescoping sum.

Nice problem.

Harsh Shrivastava - 5 years, 3 months ago

Log in to reply

Thanks!

BTW Why don't you join slack?

Nihar Mahajan - 5 years, 3 months ago

Nice solution + Problem :-)

Akshat Sharda - 5 years, 3 months ago

Log in to reply

Glad you liked :)

Nihar Mahajan - 5 years, 3 months ago

Great problem! Never thought about complex numbers and telescoping series :)

John Frank - 5 years, 3 months ago

remarkable question

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...