Consider,
S = 2 [ 1 + x + k = 1 ∑ ∞ ( ( 4 k ) ! x ( 4 k ) + ( 4 k + 1 ) ! x ( 4 k + 1 ) ) ]
If S = 0 , then find all possible numbers of solution for − 6 < x < 0 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution, but in last steps, you can find the range of 'x', just for additional maths.
e x + s i n x + c o s x = 0 , e x = − √ 2 [ s i n ( 4 π + x ) ]
e x can never be negative or zero ,so s i n ( 4 π + x ) must be negative.
∴ − π < 4 π + x < 0 ,
∴ 4 − 5 π < x < 4 − π ,
At x= 4 − 5 π ,L.H.S= e 4 − 5 π = 0.xxx and R.H.S = 0. So. L.H.S >R.H.S.
At x= 4 − 3 π ,L.H.S= e 4 − 3 π > e 4 − 5 π and R.H.S = 1.41 > L.H.S. So their graph will intersect. Now again, at x = 4 − π , L.H.S = e 4 − π > e 4 − 3 π and R.H.S = 0 , so their graph will again intersect. Hence we get two solutions.
Problem Loading...
Note Loading...
Set Loading...
First, expand the equation using Taylor series
S= 2(1+x+ 4 ! x 4 + 5 ! x 5 + 8 ! x 8 + 9 ! x 9 +...)+( 2 ! x 2 + 3 ! x 3 + 6 ! x 6 + 7 ! x 7 +...)-( 2 ! x 2 + 3 ! x 3 + 6 ! x 6 + 7 ! x 7 +...)
S= ( 0 ! x 0 + 1 ! x 1 + 4 ! x 4 + 5 ! x 5 + 8 ! x 8 + 9 ! x 9 +...)+( 2 ! x 2 + 3 ! x 3 + 6 ! x 6 + 7 ! x 7 +...)+( 0 ! x 0 + 1 ! x 1 + 4 ! x 4 + 5 ! x 5 + 8 ! x 8 + 9 ! x 9 +...)-( 2 ! x 2 + 3 ! x 3 + 6 ! x 6 + 7 ! x 7 +...)
S= ( 0 ! x 0 + 1 ! x 1 + 2 ! x 2 + 3 ! x 3 + 4 ! x 4 + 5 ! x 5 + 6 ! x 6 + 7 ! x 7 + 8 ! x 8 + 9 ! x 9 +...)+( 1 ! x 1 - 3 ! x 3 + 5 ! x 5 - 7 ! x 7 + 9 ! x 9 -...)+( 0 ! x 0 - 2 ! x 2 + 4 ! x 4 - 6 ! x 6 + 8 ! x 8 -...)
S= e x +sin(x)+cos(x)
Input x= -2 π → S= 1.0018...
Input x= - π → S=-0.956...
Input x= 0 → S= 2
Then, for S=0, there are 2 values for x, one between -2 π and - π and the other between - π and 0