For the lovers of maths!

Calculus Level pending

Consider,

S = 2 [ 1 + x + k = 1 ( x ( 4 k ) ( 4 k ) ! + x ( 4 k + 1 ) ( 4 k + 1 ) ! ) ] S = 2 \left [1+x+\sum_{k=1}^{\infty}{ \left(\dfrac{x^{(4k)}}{(4k)!}+\dfrac{x^{(4k+1)}}{(4k+1)!} \right)} \right ]

If S = 0 S=0 , then find all possible numbers of solution for 6 < x < 0 -6 < x < 0 .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jeko Lonardo
May 29, 2016

First, expand the equation using Taylor series

S= 2(1+x+ x 4 4 ! \frac {x^4}{4!} + x 5 5 ! \frac {x^{5}}{5!} + x 8 8 ! \frac {x^{8}}{8!} + x 9 9 ! \frac {x^{9}}{9!} +...)+( x 2 2 ! \frac {x^{2}}{2!} + x 3 3 ! \frac {x^{3}}{3!} + x 6 6 ! \frac {x^{6}}{6!} + x 7 7 ! \frac {x^{7}}{7!} +...)-( x 2 2 ! \frac {x^{2}}{2!} + x 3 3 ! \frac {x^{3}}{3!} + x 6 6 ! \frac {x^{6}}{6!} + x 7 7 ! \frac {x^{7}}{7!} +...)

S= ( x 0 0 ! \frac {x^0}{0!} + x 1 1 ! \frac {x^1}{1!} + x 4 4 ! \frac {x^4}{4!} + x 5 5 ! \frac {x^{5}}{5!} + x 8 8 ! \frac {x^{8}}{8!} + x 9 9 ! \frac {x^{9}}{9!} +...)+( x 2 2 ! \frac {x^{2}}{2!} + x 3 3 ! \frac {x^{3}}{3!} + x 6 6 ! \frac {x^{6}}{6!} + x 7 7 ! \frac {x^{7}}{7!} +...)+( x 0 0 ! \frac {x^0}{0!} + x 1 1 ! \frac {x^1}{1!} + x 4 4 ! \frac {x^4}{4!} + x 5 5 ! \frac {x^{5}}{5!} + x 8 8 ! \frac {x^{8}}{8!} + x 9 9 ! \frac {x^{9}}{9!} +...)-( x 2 2 ! \frac {x^{2}}{2!} + x 3 3 ! \frac {x^{3}}{3!} + x 6 6 ! \frac {x^{6}}{6!} + x 7 7 ! \frac {x^{7}}{7!} +...)

S= ( x 0 0 ! \frac {x^0}{0!} + x 1 1 ! \frac {x^1}{1!} + x 2 2 ! \frac {x^2}{2!} + x 3 3 ! \frac {x^{3}}{3!} + x 4 4 ! \frac {x^{4}}{4!} + x 5 5 ! \frac {x^{5}}{5!} + x 6 6 ! \frac {x^{6}}{6!} + x 7 7 ! \frac {x^{7}}{7!} + x 8 8 ! \frac {x^{8}}{8!} + x 9 9 ! \frac {x^{9}}{9!} +...)+( x 1 1 ! \frac {x^1}{1!} - x 3 3 ! \frac {x^3}{3!} + x 5 5 ! \frac {x^5}{5!} - x 7 7 ! \frac {x^{7}}{7!} + x 9 9 ! \frac {x^{9}}{9!} -...)+( x 0 0 ! \frac {x^{0}}{0!} - x 2 2 ! \frac {x^{2}}{2!} + x 4 4 ! \frac {x^{4}}{4!} - x 6 6 ! \frac {x^{6}}{6!} + x 8 8 ! \frac {x^{8}}{8!} -...)

S= e x e^x +sin(x)+cos(x)

Input x= -2 π \pi \rightarrow S= 1.0018...

Input x= - π \pi \rightarrow S=-0.956...

Input x= 0 \rightarrow S= 2

Then, for S=0, there are 2 values for x, one between -2 π \pi and - π \pi and the other between - π \pi and 0

Nice solution, but in last steps, you can find the range of 'x', just for additional maths.

e x + s i n x + c o s x = 0 e^x+sin⁡x+cos⁡x=0 , e x = 2 [ s i n ( π 4 + x ) ] e^x=-√2[sin⁡(\frac{π}{4}+x)]

e x e^x can never be negative or zero ,so s i n ( π 4 + x ) sin⁡(\frac{π}{4}+x) must be negative.

π < π 4 + x < 0 -π< \frac{π}{4}⁡+x<0 ,

5 π 4 < x < π 4 \frac{-5π}{4}<x<\frac{-π}{4} ,

At x= 5 π 4 \frac{-5π}{4} ,L.H.S= e 5 π 4 e^\frac{-5π}{4} = 0.xxx and R.H.S = 0. So. L.H.S >R.H.S.

At x= 3 π 4 \frac{-3π}{4} ,L.H.S= e 3 π 4 > e 5 π 4 e^\frac{-3π}{4}>e^\frac{-5π}{4} and R.H.S = 1.41 > L.H.S. So their graph will intersect. Now again, at x = π 4 x=\frac{-π}{4} , L.H.S = e π 4 > e 3 π 4 e^\frac{-π}{4}>e^\frac{-3π}{4} and R.H.S = 0 , so their graph will again intersect. Hence we get two solutions.

Akash Shukla - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...