For the years that have gone by!

Calculus Level 3

r = 2 n r r 2 d x x ln x \large \sum_{r=2}^{n} \int_{r}^{r^{2}} \dfrac{dx}{x\ln x}

For f ( n ) f(n) as defined above, f ( 2016 ) = α ln 2 f(2016)=\alpha \ln 2 . Find α \alpha .


The answer is 2015.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

f ( n ) = r = 2 n r r 2 1 x ln x d x Let u = ln x , d x = e u d u = r = 2 n ln r 2 ln r e u u e u d u = r = 2 n ln r 2 ln r 1 u d u = r = 2 n ln u ln r 2 ln r = r = 2 n ln ( 2 ln r ) ln ( ln r ) = r = 2 n ln ( 2 ln r ln r ) = r = 2 n ln 2 = ( n 1 ) ln 2 \begin{aligned} f(n) &=\sum_{r=2}^n \int_r^{r^2} \frac 1{x\ln x} dx & \small \color{#3D99F6} \text {Let } u= \ln x, \ dx=e^u du \\ &=\sum_{r=2}^n \int_{\ln r} ^{2 \ln r} \frac {e^u} {ue^u} du \\ &=\sum_{r=2}^n \int_{\ln r} ^{2 \ln r} \frac 1u du \\ &=\sum_{r=2}^n \ln u \big|_{\ln r} ^{2 \ln r} \\ &=\sum_{r=2}^n \ln (2 \ln r) - \ln(\ln r) \\ & = \sum_{r=2}^n \ln \left(\frac {2 \ln r}{\ln r} \right) \\ &=\sum_{r=2}^n \ln 2 \\ & = (n-1)\ln 2 \end{aligned}

f ( 2016 ) = 2015 ln 2 α = 2015 \implies f(2016) = 2015\ln 2 \implies \alpha =\boxed {2015}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...